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Abstract

Market makers play a vital role in ensuring efficient trade within financial mar-
kets. Recent literature has delved into training market-making systems using
reinforcement learning. This paper delves into the impact of various loss function
formulations on risk management behavior within reinforcement-based market
making. Through empirical evaluation, we contrast profit-maximizing strategies
with risk-averse approaches, finding that penalties for inventory and cash manage-
ment foster more resilient and adaptable market-making strategies. Our results
underscore the significance of striking a balance between profit maximization and
risk management in algorithmic trading, providing actionable insights for refining
strategies in practical settings.

1 Introduction

Financial markets are essential to global economies, managing trillions in transactions daily. Market
makers play a crucial role by continuously quoting buying and selling prices to ensure there always
exists someone to buy and sell from. They profit by offering lower bid prices and higher ask prices,
creating a spread. For example, if a market maker sets a bid price of $10.00 and an ask price of
$10.10, buyers may purchase between $10.05 to $10.15, while sellers may sell between $9.90 to
$10.20. When a buyer agrees to buy at $10.10, the market maker sells, and when a seller agrees to
sell at $10.00, the market maker buys, earning profits from price differences and transaction volumes.

1.1 Current Literature

Reinforcement learning (RL) has emerged as a potent tool for optimizing market-making strategies.
Its ability to discern intricate behavioral patterns from data renders it well-suited for navigating
dynamic and uncertain market landscapes. Studies such as Nevmyvaka, Feng, and Kearns 2006 and
Spooner and Savani 2020 have showcased RL’s potential to surpass traditional market-making models.
Nonetheless, a pivotal challenge persists in formulating appropriate reward and loss functions to steer
RL agents towards effective and risk-averse strategies.

Efficient market makers must adeptly manage the risks associated with inventory holdings and
maintaining sufficient cash reserves. Inadequate inventory levels can lead to losses in volatile markets,
while insufficient cash can curtail opportunities. Guilbaud and Pham 2013 tackle this challenge by
integrating risk considerations via constraints or implicitly shaping reward functions. However, the
explicit impact of distinct loss function formulations on risk management behavior remains relatively
unexplored.

In a recent study by Zhang, Zohren, and Roberts 2020, the authors introduce a reinforcement learning
framework tailored to market volatility dynamics, dynamically adjusting trading operations based
on prevailing market conditions. Their findings underscore the efficacy of Deep Q-Network (DQN)
algorithms, particularly in yielding profits despite substantial transaction costs. Noteworthy is the
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comparison of different RL architectures, shedding light on the underexplored potential of actor-
critic models. The authors observe that actor-only models, lacking the critic component, tend to
necessitate prolonged training times, suggesting a promising avenue for further exploration in market-
making strategies. Additionally, Zhang, Zohren, and Roberts 2020 explore an actor-only model
for comparison, revealing its protracted training times owing to the risk of erroneously labeling
individual bad actions as good when total rewards are substantial, particularly with limited training
data. Consequently, their findings suggest a promising avenue for further exploration in critic-actor
models, which remain relatively under-explored in the literature.

1.2 Problem and Contributions

The existing literature, while valuable, leaves a crucial gap in understanding how the explicit design
of loss functions shapes the balance between risk mitigation and profit maximization within RL-
based market making. Our study seeks to bridge this gap, providing insights that will lead to the
development of more robust and effective market-making algorithms.

We make the following key contributions:

1. We enhance market-making strategies by evaluating different loss functions within a re-
inforcement learning framework. Our analysis reveals how incorporating penalties for
excessive inventory and low cash reserves can concurrently boost profitability and mitigate
risks.

2. Through empirical evaluation, we provide valuable insights into the impact of loss function
design on RL policy optimization, deepening our understanding of adaptive strategies in
dynamic market environments.

3. Our findings underscore the importance of balancing profit maximization with risk man-
agement in algorithmic trading. We offer practical implications for improved risk-aware
strategies, directly benefiting the development of real-world market-making applications.

2 Methodology

2.1 Environment

Asset Prices

In our simulation, we model the underlying asset’s (a stock) price dynamics using geometric Brownian
motion, a widely-used stochastic process in financial modeling (Black and Scholes 1973). This
process assumes asset returns are normally distributed. The governing stochastic differential equation
is:

dSt = rStdt+ σStdWt

Here, r is the risk-free interest rate (equivalent to the savings account rate), σ is the volatility of
the stock returns (the standard deviation of the logarithmic returns), and dWt is a Wiener process
increment representing a standard Brownian motion with mean 0 and variance dt. The solution to
this stochastic differential equation yields the price of the asset at time t, given by:

St = S0e
(r− 1

2σ
2)t+σWt

We assume constant values for σ and r.

Buyer and Sellers

Bid and ask prices are modeled as normally distributed random variables with means equal to the
previous asset price and a constant standard deviation. Transactions are determined based on these
prices, and profits are computed accordingly.
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2.2 Reinforcement Learning Model

We implemented an actor-critic reinforcement learning (RL) approach, optimizing the policy function
directly to maximize cumulative rewards. The actor optimizing the policy to maximize rewards and
the critic estimating the expected reward through an action value function, commonly referred to as
Q.

2.3 Inputs and Outputs

Our model relies on several key inputs for effective market-making strategies. Historical bid and ask
prices, denoted by vectors b⃗ and a⃗ respectively, provide crucial insights into past market dynamics,
each spanning a length of t − 1 rounds of buying and selling. The profit history, encapsulated in
vector p⃗ of the same length, offers a record of accumulated profits over these rounds. Additionally,
historical inventory and cash levels, represented by vectors i⃗ and c⃗ respectively, track inventory and
cash reserves across previous rounds, aiding in decision-making. Moreover, the current inventory (it)
and cash (ct) values provide real-time information about available stock for selling and cash reserves
for purchasing securities, shaping current trading strategies.

The output will be two real-values, a bid and an ask price at time t+ 1. This is denoted as bt+1 and
at+1 respectively.

2.4 Policy Network (Actor)

Our policy network adopts a feed-forward neural network architecture with three fully connected
linear layers and ReLU activation functions. The network structure allows for adaptability to varying
input sizes, enhancing flexibility in handling diverse environments.

Loss Functions

We experimented with two distinct loss functions and compared their performance based on total
rewards:

Let pt be profits at time t, cmin is the threshold for acceptable cash reserves and imax is the threshold
for acceptable inventory levels.

a) Profit: This loss function solely maximizes profit, disregarding inventory and cash consider-
ations. It is defined as:

loss = −pt

b) Profit with Inventory and Cash Penalty: This loss function augments the profit-oriented
approach by penalizing excessive inventory and low cash reserves. It encourages the model
to optimize profits while effectively managing inventory and cash flow. It is defined as:

loss = −pt +max(0, cmin − ct) + max(0, (it − imax) · St)

2.5 Incentives and Termination

Reward Function

The reward function measures the performance of the agent in the environment. We use the realized
gains (profit) earned from trading as the reward function.

Termination

Each episode will run for at-most 200 steps or until a termination condition is met. The episode
terminates if the model’s cash is ≤ 0 or if inventory is < 0. We conducted 400 episodes in total.

3 Results and Discussion

3.1 Rewards and Steps till Termination

Figure 1a shows the cumulative reward over the number of episodes. We can see that the agent using
the penalty loss function achieves a significantly higher cumulative reward than the agent using the
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non-penalty loss function. This suggests that penalizing the agent for high inventory and low cash
leads to better overall performance. Figure 1a for the non-penalty loss function highlights a curious
phenomenon. The extended periods of stagnation, where the reward remains unchanged, suggest that
the agent is minimizing its trading activity. This behavior aligns with Figure 2, where the non-penalty
function repeatedly achieves a reward of 0. It’s possible that the model has learned that the current
market conditions make most trades unprofitable. In response, the agent likely manipulates the
bid-ask spread to discourage trading activity. This strategy allows the agent to avoid losses, even
though it sacrifices potential profits.

In Figure 1b, shows the cumulative steps taken over the number of episodes. The penalty loss function
initially leads to early termination, requiring fewer steps per episode. However, as the agent continues
to learn, it gradually takes more steps before termination, suggesting an increased ability to navigate
the environment. This suggests that the penalty-based model might initially struggle but ultimately
develops strategies that allow it to sustain operations for longer durations. In contrast, the non-penalty
loss function exhibits a consistent number of steps per episode, hinting at a potentially less adaptable
strategy for achieving the termination condition.
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(a) Cumulative Reward
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(b) Cumulative Steps

Figure 1: Cumulative Reward and Steps

In Figure 2 we can see that the model with the penalty loss function achieves a consistently higher
reward across episodes compared to the non-penalty model. This indicates that incorporating a
penalty for high inventory and low cash into the loss function incentivizes the agent to take actions
that not only generate profit but also maintain healthy inventory and cash flow levels. This strategy
appears to be more successful in the long run, even though it might lead to slightly lower rewards
in some individual episodes. We hypothesis this occurs because the penalty helps the agent avoid
scenarios where a large profitable trade leaves it with insufficient cash for future opportunities or
burdened by excess inventory that becomes difficult to sell.
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Figure 2: Reward per Episode
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3.2 Ask-Bid Spreads

Figure 3 reveals valuable insights into the distribution of ask-bid spreads for the two models across
intervals of 20 episodes. The median spreads, represented by the lines within each box, indicate a
trend where the penalty-based model generally maintains a tighter ask-bid spread compared to the
non-penalty model. This suggests that the penalty-based model might be operating within a narrower
profit margin, potentially focusing on higher trading frequency to compensate. Additionally, in
several intervals, the penalty-based model exhibits less variability in its spread, indicated by smaller
boxes (interquartile range). This hints at a more consistent strategy compared to the non-penalty
model.

The presence of outliers in some intervals highlights episodes where a model’s ask-bid spread deviates
significantly from its normal behavior. For instance, during certain intervals, the non-penalty model
exhibits noticeably wider spreads as seen by larger box sizes and more prominent outliers. This
could signify that the non-penalty model has a more reactive spread strategy, possibly adjusting it
drastically in response to changing market conditions or fluctuations in inventory or cash levels.

The observed ask-bid spread patterns offer clues about the different strategies and risk tolerances
employed by the two models. The penalty-based model’s consistently tighter spread suggests a
risk-averse approach, prioritizing maintaining a healthy balance of inventory and cash flow. This
strategy mitigates the risks associated with low cash reserves or excess inventory, which can hinder
the agent’s ability to capitalize on future opportunities. In contrast, the non-penalty model appears
more opportunistic, potentially widening its spread to capture larger profits but also exposing itself to
greater uncertainty.
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Figure 3: Ask-Bid Spreads Over-Time

3.3 The Big Picture

The analysis of the ask-bid spread, in conjunction with Figures 1 and 2, reveals a nuanced under-
standing of the penalty loss function’s impact on the model’s behavior. The penalty-based model’s
consistently tighter spread suggests a strategic focus on maintaining manageable inventory and cash
levels, potentially sacrificing some immediate profit opportunities to ensure long-term stability. This
conservative approach aligns with Figure 2, where the penalty-based model exhibits a more consistent
reward across episodes, implying reduced susceptibility to market fluctuations and risky inventory
imbalances. Furthermore, Figure 1b highlights how this model initially terminates episodes in fewer
steps. This could signify an initial focus on quick, smaller profit trades that avoid the risks associated
with holding excessive inventory or dwindling cash reserves. As the model learns a better balance,
its episodes lengthen (Figure 1b), indicating that it might start to take calculated risks by holding
inventory for potentially more profitable trades without compromising its overall reward (Figure 1a).
This suggests a learning curve where the penalty guides the model towards a sustainable strategy.
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4 Conclusion

Effective market making requires a delicate balance between profit maximization and risk manage-
ment. Our study addresses this challenge, demonstrating how reinforcement learning models guided
by tailored loss functions can develop adaptive risk-aware strategies.

Strengths

Our study possesses several significant strengths. First, our direct comparison of loss functions
with and without explicit risk penalties provides unique insights into how these penalties shape
model behavior. Results reveal that incorporating inventory and cash considerations into the loss
function directly promotes risk-averse strategies, ultimately enhancing long-term profitability and
stability. Additionally, our use of an actor-critic RL architecture offers a valuable perspective within
an under-explored area of market making research. Finally, our findings illuminate how loss function
design influences RL policy optimization, shedding light on adaptive strategies in dynamic market
environments. These integrated strengths solidify our work’s distinct contributions to the field of
reinforcement learning for trading.

Weaknesses

While our market simulation provides valuable insights, it has limitations that should be addressed in
future work. Firstly, our simulation focuses on a single stock market, overlooking the diversity of
global markets with distinct distributions and patterns. Employing multivariate time series simulations
could mitigate this limitation by capturing the complexities of multiple market indices. Additionally,
using a geometric Brown motion, which assumes normally distributed asset returns, may not fully
capture market dynamics, warranting exploration of heavier-tailed distributions like the t-distribution.
Moreover, our model assumes homoscedasticity in stock prices, neglecting volatility clustering
inherent in financial data. Future research could incorporate heteroscedastic distributions to better
represent market volatility. Furthermore, expanding our comparison of loss functions to include more
sophisticated risk management metrics would enhance the robustness of our analysis.

Future Work

Moving forward, it is imperative for future research to delve into more sophisticated market simu-
lations and loss functions, aiming to integrate a broader array of risk considerations into both the
simulation environment and policy framework. Moreover, an important avenue for investigation lies
in analyzing the behavior of actor-critic RL architectures during pivotal market scenarios, such as the
onset of COVID-19 restrictions in March 2020. Understanding how these architectures adapt and
evolve in response to critical market conditions is paramount for ensuring their effectiveness and
resilience.

Furthermore, a promising direction for future exploration involves integrating sentiment analysis
derived from financial news into actor-critic RL architectures. This is motivated by two primary
factors:

• There exists a level of skepticism surrounding purely quantitative trading algorithms, given
that market sentiment plays a significant role in influencing stock values. By incorporating
financial sentiment into actor-critic RL architectures, we can potentially enhance their risk
management capabilities. This integration would enable the anticipation of future market
crises within specific stocks or markets, leveraging insights from reputable financial news
agencies.

• Despite some initial research efforts in integrating financial sentiment into RL architectures,
this area remains largely underexplored. Moreover, considering the relative novelty of
actor-critic RL architecture within trading algorithms, investigating this intersection presents
a fertile ground for exploration. By bridging these domains, future research can unlock new
avenues for enhancing trading strategies and risk management practices.
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