
University of British Columbia

Math 441

A Constraint Satisfaction Approach to

Optimizing Sport Schedules

Authors: Siddharth Nand, Eros Rojas, Jashan Brar, Yovindu Don

Supervisor: Dr. Patrick Walls

April 12, 2024



Contents

1



Abstract

Crafting sports schedules is a complex task, requiring consideration of various

factors for fairness and logistical feasibility. This paper explores using constraint sat-

isfaction techniques, drawn from artificial intelligence, to optimize sports schedules.

Our methodology involves outlining the constraint satisfaction framework and employ-

ing the FIFA World Cup as a case study. We aim to develop an optimal and equitable

schedule for major sporting events, considering factors such as match distribution, team

rest periods, and revenue maximization. Additionally, we offer a predictive glimpse into

what the schedule for the 2026 FIFA World Cup could resemble, based on our approach.

This speculative projection aims to spark discussions for the planning and execution of

one of the world’s most anticipated sporting events.



1 Introduction

Crafting a sports schedules is a complex process that involves satisfying numer-

ous factors to ensure fairness, competitiveness and logistical feasibility. Whether it’s

organizing a league’s regular season or orchestrating a major tournament the goal is to

create schedules that meet the needs of teams, venues, broadcasters and fans. In recent

years, computational methods have become invaluable for optimizing these schedules

by offering innovative solutions to intricate scheduling challenges.

1.1 Overview

This paper delves into the use of constraint satisfaction techniques for optimizing

sports schedules. Constraint satisfaction provides a robust framework for modeling and

solving scheduling problems. By encoding scheduling constraints as logical relation-

ships, this approach enables the creation of schedules that meet multiple criteria while

respecting specified constraints.

Our methodology is in two key phases: firstly, we outline the constraint satisfac-

tion framework for sports scheduling, outlining the formulation of constraints and the

algorithmic methods used for optimization. Throughout our paper, we continuously

use the FIFA World Cup as an example to illustrate the application of our approach

within the context of a major international sporting event.

1



1.2 Research Question

Our study aims to address the question: How can we develop an optimal and

equitable schedule of major sporting events, such as the FIFA World Cup, considering

factors such as geographical distribution of matches, sufficient rest periods for teams

whilst maximizing revenue?

1.3 Objectives and Significance

The main goal of this research is to devise a scheduling framework that tackles the

specific demands of organizing major sporting events. This involves ensuring fairness in

playing conditions across all participating teams, optimizing match distribution among

host cities and maximizing revenue for the venues. The significance of this study lies

in its potential to contribute to the successful execution of large-scale sporting events

serving as a blueprint for future tournaments and offering valuable insights into the

planning and optimization of such events ?.

2



2 Background

2.1 Optimization

Optimization is a fundamental concept in mathematics and computer science,

concerned with finding the best solution to a given problem from a set of possible solu-

tions. It plays a crucial role in various fields such as engineering, economics, operations

research, and machine learning.

2.2 Convexity

Convexity lies at the heart of optimization, shaping the behavior of functions and

sets in profound ways. Its mathematical elegance and practical implications make it

a cornerstone in optimization theory and practice. Understanding convexity unveils

fundamental principles that drive efficient solutions in a wide range of real-world ap-

plications.

Convex Optimization

Convex optimization refers to the class of mathematical optimization problems

where the objective function and the feasible set are both convex. Convexity is a funda-

mental property in optimization, characterized by the property that any line segment

connecting two points on the graph of the function lies above or on the graph itself.

Mathematically, a function f(x) defined on a set C is convex if, for all x1, x2 ∈ C and

for all λ in the interval [0, 1], the following inequality holds: ?

3



f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Convex optimization problems have desirable properties, including the guarantee

of global optimality for local optima, the existence of efficient algorithms for finding

optimal solutions, ? and robustness to perturbations ?. Common examples of convex

optimization problems include linear programming, quadratic programming, and convex

semi-definite programming. ?

Non-Convex Optimization

Non-convex optimization, in contrast, encompasses problems where either the

objective function, the feasible set, or both are non-convex. Non-convex optimiza-

tion problems are significantly more challenging than their convex counterparts due

to the presence of local optima, saddle points, and multiple disconnected feasible re-

gions. Unlike convex optimization problems, non-convex problems do not enjoy the

same guarantees of global optimality for local optima, and finding global optima can

be computationally intensive or even NP-hard in some cases. ?

2.3 Scheduling Theory

Scheduling theory is a crucial segment of operational research. Initially it was

intended for applications in computer science and manufacturing but has now extended

into fields such as agriculture and transport. This is due to its decision-making pro-

4



cesses which involves the allocation of limited resources over time ?. This discipline

addresses the challenges of optimally arranging and timetabling tasks with goals such

as minimizing completion times or maximizing resource utilization ? ?.

In sports scheduling, the scheduling frameworks are adapted to account for the

geographical distribution of venues, the need for rest days between matches for teams

and the sequential manner in tournament phases. Therefore by extending operations

research frameworks to sports scheduling, it can generate high-quality match schedules

that meet logistical needs as well as the engagement of fans.

2.4 Factors Influencing Scheduling in Sports Events

Geographical Considerations

An important factor when scheduling international sports competition is Geogra-

phy. As there are significant logistical challenges such as the distances between venues

which require meticulous planning ?. Travel logistics need to take into account: time

zones and local climatic conditions, this is essential to minimize athlete fatigue and

optimize performance. The implications also extend beyond well-being of athletes as

it also needs to account for fans who might travel. So the aim is to minimize travel

distances and set fair match start times to ensure equity, optimize performance and an

enjoyable fan participation.

5



Rest and Recovery

Athlete health is a big pillar in sports scheduling where the allocation of adequate

rest periods between matches is critical. Research indicates that sufficient rest is integral

for injury prevention and maintaining optimal performance ?. In scheduling terms, this

translates into mathematical constraints that maintain a minimum rest period between

consecutive games for each team. Models must effectively balance rest periods with the

logistical aspects of the tournament.

Popularity and Viewership

The attractiveness and expected audience are crucial factors in sports scheduling

for both fans and revenue. High-profile matches involving teams such as Argentina,

Brazil, France and England to name a few are scheduled during peak hours to maximize

viewership and advertising income. Integrating economic and viewership models into

the scheduling process enables the prediction of revenue streams and audience sizes

which vary with different match timings and pairings ?.

2.5 Discrete Optimization

Discrete optimization involves finding the optimal solution from a finite set of

choices and includes problem types like integer programming where solutions must

be integer and combinatorial optimization which deals with finding the most efficient

ordering of elements in a set ?.

6



Key terms in discrete optimization include the objective function which is the for-

mula that needs to be maximized or minimized, constraints which are the limitations

or requirements that the solution must satisfy and decision variables which represent

the choices available that can affect the outcome of the objective function. Integer pro-

gramming and combinatorial optimization problems are essential in fields like logistics

or finance ast they are characterized by their complex and discrete decision spaces.

They are often NP-hard in nature indicating that finding optimal solutions for them is

computationally difficult and likely requires exponential time.

Discrete optimization principles are relevant to scheduling problems especially

ones aiming to allocate resources or events optimally under constraints. Round-robin

tournaments in which each team plays every other team once such as the Group Stage

have significant need for discrete optimization ?. A simplified implementation of discrete

optimization can be represented by the following:

Decision Variables:

Xijk =


1 if team i plays against team j in time slot k,

0 otherwise.

Objective Function:

min
∑
i,j,k

dijXijk

7



where dij denotes the distance between the locations of teams i and j.

Constraints are added to ensure each team plays the required number of matches,

no team plays more than once per time slot and other logistical or fairness conditions

are met.

2.6 Constraint Satisfaction Problems (CSP)

Constraint Satisfaction Problems (CSP) serve as a crucial framework within com-

binatorial optimization. They are aimed at identifying solutions that satisfy multiple

constraints simultaneously. A CSP involves assigning values to a set of variables, rep-

resented as X = {x1, x2, . . . , xn}, from predetermined domains D = {D1, D2, . . . , Dn},

such that all imposed constraints C = {c1, c2, . . . , cm} are met ?. Variables represent

decision elements, domains represent possible values for each variable and constraints

represent restrictions on the variables

Techniques for solving CSPs typically involve algorithms such as backtracking. It

involves systematically exploring variable assignments and backtracking when a con-

straint is violated ?. Constraint propagation is a another key technique which reduces

search space by eliminating values that cannot participate in a solution based on current

partial assignments ?. While some instances are solvable in polynomial time, many fall

into the NP-Hard category or even NP-complete.

In sports scheduling CSPs offer a structured method to develop feasible schedules

8



that comply with constraints ?. Matches are modeled as variables while potential

dates and venues form the domains and logistical and fairness conditions represent

the constraints. The application of CSPs enables a systematic approach to explore all

possible scheduling configurations to satisfy constraints.

2.7 Solving CSPs

There are three primary methods used to solve Constraint Satisfaction Problems

(CSPs): backtracking, constraint propagation, and local search techniques. This section

delves deeper into these methods to provide a clearer understanding of how CSPs are

tackled.

Backtracking Approach

Backtracking involves attempting to build a solution gradually, one component

at a time and eliminating those components if they aren’t possible. It is similar to

depth-first search with the addition of pruning where the algorithm discards any partial

answer and goes back to attempt other options if it is ever found that a partial solution

cannot potentially lead to a complete solution ?. Backtracking in the context of CSPs

involves choosing a variable then giving it a value that is consistent with the current

partial solution and moving on to the next variable in an iterative manner through the

search space. Until all variables are allocated or there are no more values to assign, the

procedure continues if no conflicts are found.

9



In the backtracking framework for scheduling, one can define decision variables

similar to those in optimization models. For instance, let Xij denote whether team i

plays against team j in a particular round. The backtracking process can be repre-

sented by a decision tree, where each node represents a decision stage, and branches

represent possible choices. The algorithm progresses by traversing this tree, making

assignments to variables Xij, and checking at each step whether the current partial

solution violates any scheduling constraints. If a constraint is violated, the algorithm

backtracks, undoing the last assignment and trying a different path in the decision tree.

For example, it can be simplified as follows:

1. Select an unassigned pair of teams.

2. Assign them to the next available time slot.

3. Check if this leads to a conflict with existing assignments.

4. If a conflict is detected, remove the last assignment and try a different pair.

5. If no conflict is detected, proceed to assign the next pair of teams.

6. Continue until all teams are assigned without conflict or no more assignments are

possible.

10



Constraint Propagation

Constraint Propagation is an inferential method used in solving CSPs to simplify

constraints and reduce the search space. It involves reducing the domain of variables

by enforcing consistency techniques and works by repeatedly applying local consistency

methods until no further reduction is possible. A common form is arc consistency, which

requires that for every variable xi with a domain Di and every variable xj with a domain

Dj for which there exists a constraint cij, every value in Di has some corresponding

value in Dj that satisfies cij ?.

It begins before the constraint satisfaction problem even begins and can elim-

inate scheduling times that would violate constraints like venue availability or team

preferences which reduces the search space effectively. To do this, take the domain Di

representing possible match times for team i, and Dj for team j where constraint prop-

agation effectively removes times from Di that conflict with already scheduled games

in Dj according to the constraints C. It doesn’t only streamline the problem before

search algorithms like backtracking are used but also runs alongside to continuously

reduce the problem space and expedite the solution. This is critical as many scheduling

problems have a large space of potential solutions and are expensive computationally.

Local Search

Local Search is a heuristic method for problem-solving that iteratively explores

the solution space of optimization problems by moving from one solution to another.

11



These movements are made within the neighborhood of the current solution with the

aim of finding improved solutions based on constraints. Basically start with an initial

solution and iteratively move to a neighbor solution if the neighbor is considered better

?. It consists of algorithms such as Hill Climbing, Simulated Annealing, and Tabu

Search where each avoids local minima and explores the solution space in their own

different ways ?.

Local Search methods are able to handle the multi-modal nature of sports schedul-

ing problems where multiple solutions can exist. It can begin with an initial schedule S

and iteratively generate neighboring schedules S ′ through small adjustments like swap-

ping the time slots of two matches. If the adjustment leads to a schedule with improved

evaluation f(S ′) > f(S), the algorithm moves to the new schedule ?.

12



3 Literature Review

Little research has been published with respect to this particular domain, largely

due to the fact that sport-scheduling is only a small subset of applied constraint satis-

faction. Nonetheless, there are two relevant papers that seem to touch on our problem:

Scheduling of Sport Tournaments using Constraint Programming (Spanne, 2020), and

Sports Scheduling: Problems and Applications, (Ribeiro, 2011). Although these pa-

pers are insightful in their own ways, we chose to use these simply as references as our

problem is different enough to be not directly applicable. ??

3.1 Spanne, 2020

Spanne touches on a slightly different style of sports scheduling compared to

what we are focused on. Since most sports scheduling events have a time span of

several weeks, Spanne attempts constrain the schedule within the realm of several days.

Although this is largely unrealistic for real-world events, the goal of his thesis was to

derive a method that is able to be fully adaptable for any scheduling problem whilst also

being scalable. Previously to his paper, the best known algorithm for this standardized

scheduling problem can handle approximately 50 teams, and 1000 matches. However,

given there exist larger real world events, he was unsatisfied with the current techniques

and sought to find a more efficient solution. ?

Spanne derived a three-stage algorithm where match pairings, game scheduling,

and the determination of stadiums are each their own independent optimization prob-

13

https://cupmanager.net/wp-content/uploads/2020/05/scheduling_cm.pdf
https://cupmanager.net/wp-content/uploads/2020/05/scheduling_cm.pdf


lems. More specifically, this algorithm is constructed as follows:

1. Generate game templates:

(a) In this stage, the teams are enumerated into pairwise matches, where they

are further separated into groups and rounds. In the context of Spanne’s

analysis, a round is a set of matches that takes place in the same day at the

same arena. This is done to simplify the problem by a bit, as rounds are

forced to be independent from one another.

2. Assign timeslots:

(a) In this stage, every round that was created in the previous stage is assigned

to an arena. Since our rounds are independent, one CSP can be optimized

per round. It is important to notice that Spanne does not have a location

constraint, unlike our analysis which does.

3. Assign arenas:

(a) In this stage, every round is now assigned a date and start time. Although

this is historically the most difficult part of scheduling problems, due to the

work done in the previous two stages, Spanne makes this very simple. An

independent CSP is given to each arena and day, and individual times are

then scheduled.

14



This modular design allows for the user to modify intermediate results, or to switch out

any specific component for something that may work better. Additionally, since each

component is independent, they are able to run in parallel, which can drastically reduce

computation time ?. In conclusion, Spanne considered his algorithm to be a success as

it satisfied all of the constraints that he sought to fix.

3.2 Ribeiro, 2011

Riberiro’s paper is a case study which compares and contrasts the problem formu-

lations that are utilized across different sports leagues. For example, when scheduling

a game like Football there are specific considerations that must be taken in to ac-

count. These considerations and constraints are likely different for a game like Cricket,

therefore in most situations a slightly different scheduling optimization is required ?.

Unfortunately, Riberio does not go in depth into any method in specific, and instead

summarizes a wide variety of different methods across many disciplines. Since our prob-

lem is quite specific in nature, Riberio’s work serves no other purpose other than simply

being useful background information.

15



4 Design Process

Following our literature review, our design process began by identifying the type

of optimization problem we faced. It became evident that our challenge was a discrete

optimization problem. We then delved into considering suitable data structures and

algorithms to develop a custom solver for optimizing sports schedules. However, rec-

ognizing the complexity involved in building a custom solution, we opted to explore

existing tools. Initially, we attempted to utilize the popular CVXPY package. Re-

grettably, CVXPY’s design for convex optimization posed significant challenges for our

non-convex scheduling problem, ? leading us to seek alternative solutions.

4.1 Problem Classification

Our first step in problem classification involved determining which class of opti-

mization problems sports scheduling belonged to. We discerned between discrete and

continuous optimization, ultimately identifying it as a discrete optimization problem

due to the discrete decision variables involved, such as teams, stadiums, and days. Sub-

sequently, we categorized the discrete problem further into three main types: Integer

Programming (IP), Combinatorial Optimization, and Constraint Programming (CP).

• Integer Programming (IP): While IP initially seemed like a natural fit, we noted

its potential limitations in modeling complex logical constraints. Expressing rules

like ”if a team plays on day i, they need D days of rest” could pose challenges

with linear inequalities.

16



• Combinatorial Optimization: This initially seemed like a good option for our

problem. However, combinatorial optimization faces challenges in effectively ad-

dressing sports scheduling problems due to the intricate interplay between various

constraints, such as venue availability, team preferences, and rest periods. Com-

binatorial optimization algorithms may struggle to simultaneously optimize these

diverse constraints while also achieving the desired scheduling objectives, leading

to sub-optimal solutions or a combinatorial explosion.

• Constraint Programming (CP): CP stands out in solving sports scheduling prob-

lems by adeptly handling the constraints involved. For instance, when scheduling

a multi-day soccer tournament, constraint programming can easily accommodate

constraints like venue availability, team preferences, and required rest periods

between games. By intelligently modeling and enforcing these constraints, CP

algorithms can efficiently generate feasible schedules that meet logistical needs

and ensure fair play, making it the optimal choice for sports scheduling tasks.

4.2 Solving from Scratch

After determining that our problem could be addressed using constraint pro-

gramming, we embarked on developing our custom solver. Initially, we explored two

approaches: constructing a tree structure and utilizing a 3D matrix to represent schedul-

ing possibilities. With the tree structure, we aimed to encompass all feasible solutions

within our problem domain, optimizing our objective function through tree traversal to

17



identify the most favorable solution. Alternatively, the 3D matrix approach provided a

structured framework for evaluating potential solutions, allowing us to navigate through

the matrix to assess scheduling options.

Tree Structure

Recognizing the suitability of constraint programming for our task, we chose

Python to craft our solver. Our approach centered on utilizing a tree structure to

encompass all potential solutions within the problem domain. Each node in the tree

represented a specific assignment to a decision variable, with leaf nodes indicating com-

plete assignments and each level corresponding to the assignment of a specific variable.

However, as we progressed with coding our custom solver, we encountered challenges.

The sheer volume of code required increased the risk of errors, raising concerns about

the program’s reliability. Additionally, implementing efficient traversal through the

tree while optimizing the objective function proved to be a challenging task. These

challenges underscored the complexities inherent in developing a solver from scratch,

prompting us to consider exploring other structures.

3-D Matrix

At its core, we have 3 decision variables: matches, days and stadiums. Why not

use a 3D matrix to represent this? Each dimension of the matrix corresponded to days,

matches, and stadiums, respectively. This approach aimed to provide a structured

framework for evaluating potential solutions. However, traversing the 3D matrix in a

18



non-brute force way was very difficult; there doesn’t seem to exist traversal algorithms

on matrices. The sheer size of the matrix, compounded by the intricate constraints of

sports scheduling, made navigating through it a difficult task. Each cell in the ma-

trix required careful consideration of various factors, including team preferences, venue

availability, and rest periods. These challenges underscored the complexity of develop-

ing a custom solver and highlighted the need for alternative approaches to efficiently

address sports scheduling problems.

4.3 CVXPY

We considered utilizing CVXPY, a Python-based modeling tool for convex op-

timization, to solve our scheduling problem. However, upon closer examination, we

realized that while the objective function is continuous, CVXPY would still not be

suitable for our problem due to the non-convex nature of the discrete decision variables

and potentially other non-linear constraints. These binary variables represent match

occurrences between teams on specific days and stadiums, creating discontinuities in the

constraints. Additionally, other constraints in the problem may introduce non-linearity,

further contributing to its non-convexity. As a result, CVXPY, designed specifically for

convex optimization ?, would not be appropriate for solving our scheduling problem.

We recognized the need for alternative optimization approaches capable of handling

non-convex problems, prompting us to explore solvers and optimization techniques for

non-convex problems.

19



4.4 Non-Convex Optimization Solvers

After realizing our problem is most likely a non-convex optimization problem, we

looked into non-convex solvers. We found that Google Or-Tools (ortools) is the most

popular packages for constraint programming, so we went with that.

20



5 Mathematical Formulation

Below we develop a mathematical definition of a constraint satisfaction sports

schedule optimizer.

5.1 Variables

Lets define the following variables:

• di: Day i of the tournament schedule, where i ∈ {0, 1, ..., D} and D represents

the total number of days.

• sj: Stadium j within the hosting regions, where j ∈ {0, 1, ..., S} and S represents

the total number of stadiums.

• tk: Unique team k, where k ∈ {0, 1, ..., T} and T represents the total number of

teams.

• X(di, sj, tk, tl): Binary variable indicating whether team tk plays against team tl

on day di at stadium sj. It takes values in {0, 1}.

5.2 Constraints

We enforce the following constraints:

21



1. Each team plays each other α times:

T∑
j=0

X(di, sj, tk, t) +X(di, sj, t, tl) = α for all t

For each team t, the constraint sums the occurrences of matches between team tk

and all other teams tl across all days di and stadiums sj, along with the reverse

matches (between tl and tk). The total count of these matches should equal

α, indicating that each team plays against each other α times throughout the

tournament.

2. Each team plays β times per day:

S∑
j=0

X(di, sj, tk, t) = β for all di, t

For each team t, the constraint sums the occurrences of matches involving team

tk across all stadiums sj on the given day di. The total count of these matches

should equal β, indicating that each team plays β times on that particular day.

3. Each stadium holds δ matches throughout the whole tournament:

T∑
k=0

T∑
l=0

X(di, s, tk, tl) = δ for all s

22



For each stadium s, the constraint sums the occurrences of matches between any

pair of teams tk and tl across all days di in that stadium. The total count of these

matches for each stadium should equal δ, indicating that each stadium hosts

exactly δ matches over the entire tournament.

4. Each teams plays in a stadium ϵ times:

S∑
k=0

T∑
l=0

X(di, s, tk, t) = ϵ for all s, t

For each team t, the constraint sums the occurrences of matches where team t

plays in stadium s across all days di. The total count of these matches for each

team in each stadium should equal ϵ, indicating that each team plays in ϵ different

stadiums over the course of the tournament.

5. ϕ days of rest per team between games:

i+ϕ∑
d=i+1

X(d, s, t′, tk) +

i+ϕ∑
d=i+1

X(d, s, t′, tl) ≤ 1

i+ϕ∑
d=i+1

X(d, s, tk, t
′) +

i+ϕ∑
d=i+1

X(d, s, tl, t
′) ≤ 1

for each di, sj, tk, tl such that X(di, sj, tk, tl) = 1

for all s and for all t′ ̸= tk, tl

23



This constraint is expressed in two parts:

If a match between team tk and tl occurs on day di at stadium s, then for each

subsequent day di+1 to di+ϕ, the sum of matches involving any other team t′

against team tk or tl in the same stadium s should be at most 1.

Similarly, for each subsequent day di+1 to di+ϕ, the sum of matches involving team

tk or tl against any other team t′ in the same stadium s should be at most 1.

These inequalities ensure that there is no more than one match involving team tk

or tl in stadium s for each day between di and di+ϕ, providing the necessary rest

period between games for the teams involved.

5.3 Objective Function

The objective is to maximize the revenue generated from the games. We define

the objective function as follows:

Maximize
D∑
i=0

S∑
j=0

T∑
k=0

T∑
l=0

X(di, sj, tk, tl) · r(di, sj, tk, tl)

Here, r(di, sj, tk, tl) represents the estimated revenue generated by team tk playing

24



against team tl at stadium sj on day di. It is defined as:

r(di, sj, tk, tl) = capacity(sj) ·
rank(tk) + rank(tl)

2

where capacity(sj) is the stadium capacity of sj and rank(ti) is the rank of team i. The

revenue function increases with both the stadium’s capacity and the combined rankings

of the two teams.

25



6 Google OR-Tools

The introduction of modern day optimization techniques has allowed for massive

breakthroughs within the field of computational optimization. Namely, problems such

as the the Travelling Salesman Problem (TSP) are able to be solved up to an exact

solution, given enough computational power. Within the domain of constraint satis-

faction problems, most of them are traditionally solved linearly through a simple LP

or IP framework, however, recent breakthroughs have allowed for more complex and

efficient algorithms that can drastically reduce the required runtime, one of which is

Google OR-Tools.

6.1 What is Google OR-Tools

Google OR-Tools is an open-source software package that offers efficient imple-

mentations of solvers for various types of problems. These problems span the areas of

LP linear programming, mixed integer programming, constraint programming (CP),

vehicle routing (VRP), and many more. In all of these use-cases, all of the given prob-

lems suffer from having an extremely large solution space (set of possible solution),

and thus narrowing down the search space is crucial in order to find an optimal (or

approximately optimal) solution. Google OR-Tools helps mitigate this issue by offering

extremely quick algorithms that help narrow down the search space, without needing

to perform a brute force approach ?.

26



6.2 Constraint Programming with Google OR

For the purpose of this paper, we are primarily interested in the family of CP

solvers. Since our scheduler operates under the assumption of a set of specific con-

straints, we are focused on finding a set of feasible solutions that adhere to all of the

given rules. To do so, Google OR offers two distinct algorithms (each with their own

pitfalls): a CP-SAT solver, or a regular CP-solver. For this project, we decided to use

the CP-SAT solver for reasons that will be discussed later.

On a high level, the CP-SAT solver is centered around the Lazy Clause Generation

approach, which utilizes features from both SAT solving techniques (NP-complete) and

finite domain (FD) propagation. The problem is approximated into an SAT-friendly

description such that the SAT solver is able to utilize boolean representations of the

constraint variables, which are generated by FD propagation. The fine details of this

algorithm are omitted due to its extreme complexity, however if interested, the full paper

for Lazy Clause Generation can be found here with its corresponding implementation

here.?

6.3 Limitations of CP-SAT

While CP-SAT is one of the best state-of-the-art methods for CP problems, it

has a unique set of limitations when compared to more traditional and straight forward

algorithms.

27

https://web.archive.org/web/20170216215841/https://people.eng.unimelb.edu.au/pstuckey/papers/constraints09.pdf
https://github.com/google/or-tools/tree/stable/ortools/sat


1. Unlike standard LP solvers which can take continuous input variables, CP-SAT

can only take discrete values. This drastically restricts the space of problems

which CP-SAT can solve. Although there exist workarounds and plug-ins, they

are not nearly as efficient as standard LP solvers which handle continuous values.

2. For classic IP problems, CP-SAT generally is slower than existing IP solvers. This

is because of the approximations that CP-SAT makes in order to be a general CP

solver.

3. Similarly, when given SAT-formulas, CP-SAT is not as fast as dedicated SAT

solvers.

Although CP-SAT is bounded by the above limitations, its performance still remains

commendable as no known alternate solvers are able to solve all limitations listed above.

?

28



7 Pseudo-code

In this section, we outline the general structure of what a Google OR-Tools solver

for our mathematical formulation looks like. The implementation details for all of the

constraints as well as the revenue function have been omitted since they have already

been defined within the Mathematical Formulation section, and they can be found here.

The formulation of the 3 days of rest constraint will be shown in the set-up section.

The source code takes advantage of Google OR-Tools, which is why on a high level the

implementation of the solver is extremely simplistic.

Algorithm 1 FIFA Scheduling Solver

M ← Constant ▷ Number of matches
S ← Constant ▷ Number of stadiums
D ← Constant ▷ Number of days

m← cp model.CpModel() ▷ Initialize CP sovler
matches[(m,d,s)] ▷ Define variables for all M,D,S
m.Add(C1) ▷ Constraint #1 (matches scheduled once, sum of m over all S,D = 1)
m.Add(C2) ▷ Constraint #2 (one match per stadium per day, sum over all m ≤ 1)
m.Add(C5) ▷ Constraint #3 (ϕ days of rest between games per team)

revenue ← f((di, sj, tk, tl)) ▷ Function of our assignment

m.Maximize(revenue) ▷ maximizing revenue objective function

29

https://github.com/erosrojas/FIFA-World-Cup-Scheduler/blob/main/solver.py


8 Optimizing the FIFA World Cup

The FIFAWorld Cup is a football event that has become iconic at a global level. It

was initially conducted to bring countries together and encourage people to put aside

their differences. The early tournaments were modest in size with a few competing

nations. But over time, it has become a global phenomenon becoming the world’s most

watched event with almost 1.5 billion people watching the last World Cup in 2022 ?.

It has fostered a sense of global community. There were significant milestone

events that have made it so iconic such as England’s 1966 victory at home or the

dramatic 1970 tournament in Mexico. It has become much more than just a football

game as everything from music to culture has revolved around the event. The host

selection itself has become its own event as the selected nation can proudly display the

best its country has to offer for the world to see. As such, getting selected to host the

World Cup is a triumph on its own but along with the economic boost and national

pride comes a logistical nightmare to plan and execute ?.

8.1 2026 FIFA World Cup

The 2026 FIFA World Cup is expected to mark a significant milestone in the

history of the tournament. It will not only be expanding from 32 to 48 teams but

instead of a single host, it will be co-hosted by the three nations of Canada, Mexico and

the United States ?. It is a part of FIFA’s ongoing efforts to further globalize football

and leave an everlasting impact on the American market. But with that decision comes

30



logistical challenges that have never been faced at this magnitude. From coordinating

across multiple time zones to widespread travel between games spanning the entire

North American continent. Although football is far from the most popular sport in

North America, they hope that would drive a further spark of interest so 2026 is a large

investment for the future of sport but also the countries ?.

The tournament is expected to leverage advanced infrastructure and technology

to deliver a sustainable and viewer-friendly experience. It will aim to set new standards

for how the World Cup can promote unity and innovation ?.

8.2 The Group Stage

There are a few qualifying rounds that are organized independently by different

continental organizations. For the FIFA World Cup itself, the group stage is where the

tournament begins and sets the stage for the teams that will move on to the knockout

phases. The expansion to 48 teams has introduced a new format with 12 groups of

four teams each, where they play against every other team in their respective group in

a round-robin format ?. Points are awarded for each match: three for a win, one for

a draw, and none for a loss. The teams in each group are ranked based on the total

points accumulated and the top two teams from each group advance to the knockout

stages. This format is designed to ensure that each team has the opportunity to play

multiple matches and that advancement is based on performance across these games.

The group stage not only determines which teams move forward but also sets the tone

31



for the rest of the tournament ?.

8.3 Set-up

The group stage teams are determined by random draw from the qualifying teams.

The draw is made such that the qualifying teams are ranked in order according to their

world ranking, and then each group gets one team from each ”level” of rank. For

example, if there are 16 teams to choose from, each group would get one team from the

ranks 1-4, 5-8, 9-12, and 13-16. This ensures that each group has good and bad teams

relatively speaking. So first we created groups in a similar way trying to ensure one

team from each relative ranking. We focused specifically on scheduling only the central

region matches.

Group 1: Argentina, Brazil, Denmark, Peru

Group 2: France, Croatia, Mexico, Poland

Group 3: Egypt, Belgium, Spain, USA

Group 4: Portugal, England, Morocco, Uruguay

We then created a matrix of all the match-ups for each group.

Knowing that the team formulation had been tried and was difficult to work with

for the 3 days of rest constraint, we simplified the problem to work with just the matches

32



as each group only had 6 possible matches to schedule.

Knowing this, we created a matrix in which each row i contains the matches that

cannot be scheduled close to match i. We called this the ’no adjacent matches’ matrix.

Then we simply created a matrix M which defines the schedule laid out by FIFA.

The rows represent the stadiums and the columns represent the days. Lastly, before

running our optimization function we needed to store the stadium capacities in an array

to use in our objective function.

We then ran the function for each group and after each iteration We updated the

matrix M to get rid of the days which had already been scheduled. This was repeated

until all 4 groups had been scheduled. Of course the scheduled matrix only contained

the match numbers, so now all that was left was to use the previously generated list of

matchups and apply them to the matrix.

8.4 Results

Figure 1 is the final that was generated. Each color represents a group.

Figure 1: Final Schedule

33



9 Discussion & Alternative Formulations

As can be seen in the example solution that was generated, unfortunately the 3

days of rest constraint did not work as intended. It is unclear to us what the issue could

be. Further attempts and improvements could be done by formulating the problem

in a different manner entirely. Particularly this problem could be formulated as an

assignment problem rather than a scheduling one.

• Groups of workers (in this case teams) get assigned tasks (in this case stadiums)

• Assigning a team to a stadium has a cost which we try to minimize.

• Assign each team a starting stadium with cost 0. Each following stadium assign-

ment has the travel distance associated as the cost.

• Minimize the total travel distance for each team.

• Ensure that a team does not stay at one stadium by adding a constraint that a

team cannot play in the same stadium consecutively

• Another way to do this is by adding a constraint that each stadium must be

played in at least once by every team (this could severely reduce the feasibility

depending on the set schedule)

Another way this can be formulated is a graph colouring problem because of the

3 days of rest constraint.?

34



10 Conclusion

In conclusion, this paper has showcased the effectiveness of using constraint satis-

faction methods to optimize sports schedules, particularly focusing on the FIFA World

Cup as an example. Through the application of constraint satisfaction techniques, we’ve

established a framework for designing schedules that consider factors like revenue, fair-

ness, and logistical practicality.

The insights gained from this study aren’t limited to the FIFA World Cup alone;

they extend to other major sporting events as well. These findings offer valuable strate-

gies for event organizers to create schedules that are both efficient and fair, benefiting

teams, venues, broadcasters, and fans alike.

Looking forward, this research opens doors for further exploration and refinement

of scheduling methods. By continuously improving our understanding and application

of optimization techniques, we can enhance the planning and execution of future sports

events. Ultimately, this progress holds the promise of delivering tournaments that are

more enjoyable, equitable, and smoothly organized for everyone involved.

35


