
Non-Reversible Parallel Tempering:
an Embarrassingly Parallel MCMC Scheme

Saifuddin Syed,∗ Siddharth Nand∗, George Deligiannidis,† Arnaud Doucet†

May 7, 2024

Abstract

Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes
used to explore complex high-dimensional probability distributions. These algorithms can be
highly effective but their performance is contingent on the selection of a suitable annealing
schedule.

In this work, we provide a new perspective on PT algorithms and their tuning, based on
two main insights. First, we identify and formalize a sharp divide in the behaviour and per-

formance of reversible versus non-reversible PT methods. Second, we analyze the behaviour of
PT algorithms using a novel asymptotic regime in which the number of parallel compute cores
goes to infinity. Based on this approach we show that a class of non-reversible PT methods
dominates its reversible counterpart and identify distinct scaling limits for the non-reversible
and reversible schemes, the former being a piecewise-deterministic Markov process (PDMP) and
the latter a diffusion. In particular, we identify a class of non-reversible PT algorithms which is
provably scalable to massive parallel implementation, in contrast to reversible PT algorithms,
which are known to collapse in the massive parallel regime. We then bring these theoretical
tools to bear on the development of novel methodologies. We develop an adaptive non-reversible
PT scheme which estimates the event rate of the limiting PDMP and uses this estimated rate
to approximate the optimal annealing schedule.

We provide a wide range of numerical examples supporting and extending our theoreti-

cal and methodological contributions. Our adaptive non-reversible PT method outperforms
experimentally state-of-the-art PT methods in terms of taking less time to adapt, as well as
providing better target approximations. Our scheme has no tuning parameters and appears in
our simulations robust to violations of the theoretical assumption used to carry out our anal-

ysis. The method is implemented in an open source probabilistic programming available at
https://github.com/UBC-Stat-ML/blangSDK.

∗Department of Statistics, University of British Columbia, Canada.
†Department of Statistics, University of Oxford, UK.

1

https://github.com/UBC-Stat-ML/blangSDK

1 Introduction

Problem formulation. Markov Chain Monte Carlo (MCMC) methods are widely used to ap-

proximate expectations with respect to a probability distribution with density π(x) known up to

a normalizing constant, i.e., π(x) = γ(x)/Z where γ can be evaluated pointwise but the normal-

izing constant Z is unknown. Approximating such expectations is of central importance in the

vast majority of modern Bayesian analysis scenarios as well as frequentist models with complex

random effects. In both cases, γ(x) can be written as a likelihood L(x) times a prior π0(x), and

the distribution of interest is a posterior distribution over a variable x ∈ X . When the posterior

distribution has multiple well-separated modes, highly varying curvature or when one is interested

in sampling over combinatorial spaces, standard MCMC algorithms such as Metropolis–Hastings,

slice sampling and Hamiltonian Monte Carlo can perform very poorly. This work is motivated by

the need for practical methods for these difficult sampling problems and a natural direction is to

use multiple cores and/or to distribute the computation.

Figure 1: Stochastic Even-Odd swaps (SEO, top row) and Deterministic Even-Odd swaps (DEO, bottom
row) for PT, ran with N = 8 chains (left column) and N = 30 chains (right column) on a Bayesian change-
point detection model applied to text message data [DP15]. Even swap moves (rows labelled ‘E’) propose to
exchange states at chains with an even index i with the corresponding state in chain i+1. Each such swap is
independently accepted (green oblique edges) or rejected (red horizontal edges) according to a Metropolis–
Hastings step. Odd swap moves (rows labelled ‘O’) propose between odd index i and i+1. The only difference
between DEO and SEO is the way these moves are composed: in SEO, they are selected at random, while
in DEO, the two are deterministically alternated. For both SEO and DEO, exploration kernels are used
between each swap round (not shown). This sequence of moves forms N+1 annealing parameter trajectories
(paths formed by the red and green edges) in the space of annealing parameters [0, 1]. We show one such
paths Bn in bold as a visual aid. Here for simplicity we use equally spaced annealing parameters. From
this figure it is evident that this choice is suboptimal: notice that most swaps between the prior and chain
β = 1/N are rejected. This is corrected by adaptive tuning (Section 5.4).

Background: Parallel Tempering (PT). One popular approach for multi-core/distributed

exploration of complex distributions is Parallel Tempering (PT) which was introduced indepen-

2

dently in statistics [Gey91] and physics [HN96]; see also [SW86] for an earlier related proposal.

Since its inception, PT remains to this day the go-to “workhorse” MCMC method to sample

from complex multi-modal target distributions arising in physics, chemistry, biology, statistics,

and machine learning; see, e.g., [DLCB14,CRI10,ED05,AFGL05,PS03,CL08]. A recent empirical

benchmark [BHH+17] shows PT methods consistently outperform other state-of-the-art sampling

methods in practice.

To sample from the distribution of interest π, PT introduces a sequence of auxiliary tempered or

annealed probability distributions with densities π(β)(x) ∝ L(x)βπ0(x). The auxiliary distributions

are parameterized by an annealing schedule, which consists of an increasing sequence of annealing

parameters 0 = β0 < β1 < · · · < βN = 1. This bridge of auxiliary distributions is used to

progressively transform samples from the prior (β = 0), for which it is often possible to obtain

independent samples, into samples from the posterior distribution (β = 1), for which only poorly

mixing MCMC kernels may be available.

More precisely PT algorithms are based on Markov chains in which the states are (N+1)-tuples,

x = (x0, x1, x2, . . . , xN) ∈ XN+1. The augmented MCMC sampler is designed so that its stationary

distribution is given by π(x) =
∏N
i=0 π

(βi)(xi). At each iteration n, PT proceeds by applying in

parallel N + 1 MCMC kernels targeting π(βi) for i = 0, ..., N . We call these model-specific kernels

the exploration kernels. The chains closer to the prior chain (i.e. those with annealing parameter β

close to zero) can traverse regions of low probability mass under π while the chain at β = 1 ensures

that asymptotically we obtain samples from the distribution of interest. Frequent communication

between the chains at the two ends of the spectrum is therefore critical for good performance, and

achieved by proposing to swap the states of chains at adjacent annealing parameters. These propos-

als are accepted or rejected according to a Metropolis mechanism inducing a random permutation

of the N + 1 components of x.

Background: Tuning PT. The effectiveness of PT is determined by how quickly the swapping

scheme can transfer information from the prior chain to the posterior chain. There have been

many proposals made to improve this information transfer by adjusting the annealing schedule;

see, e.g., [KK05, ARR11, MMV13] or adaptively reducing annealing parameters; see, e.g., [LM16].

These proposals are useful but do not address a crucial limitation of PT, illustrated in the top

row of Figure 1: in standard PT algorithms, each annealing parameter trajectory (shown in bold

in Figure 1 and formally defined in Section 2.3) exhibits a diffusive behaviour, hence we can ex-

pect that when N is large it takes roughly O(N2) swap attempts for a state at β0 = 0 to reach

βN = 1 [DHN00]. The user thus faces a trade-off. If N is too large, the acceptance probabilities

of the swap moves are high but it takes a time of order O(N2) for a state at β = 0 to reach

β = 1. If N is too low, the acceptance probabilities of swap moves deteriorate resulting in poor

mixing between the different chains. Informally, even in a multi-core or distributed setting, for

N large, the O(N) gains in being able to harness more cores do not offset the O(N2) cost of the

diffusion (see Figures 4, and Section 3.4 where we formalize this argument). As a consequence,

3

the general consensus is that the temperatures should be chosen to allow for about a 20–40% ac-

ceptance rate to maximize the square jump distance travelled per swap in the space of annealing

parameters [0, 1] [KK05,LDMT09,ARR11]. Previous work has shown that adding more chains past

this threshold actually deteriorates the performance of PT and there have even been attempts to

adaptability reduce the number of additional chains [LM16]. This is a lost opportunity, since PT

is otherwise suitable to implementation on multi-core or distributed architectures.

Overview of our contributions. The literature on optimal PT tuning strategies has so far

implicitly assumed that the algorithm was reversible and/or serial. Our first contribution is a

rigorous, non-asymptotic result showing that a popular non-reversible PT algorithm introduced in

the physics literature, Deterministic Even-Odd swap (DEO) [OKOM01], is guaranteed to outper-

form its reversible counterpart, which we call Stochastic Even-Odd swap (SEO); see Figure 1 for

an informal introduction to DEO and SEO. This result holds under an efficient local exploration

condition that we argue is a reasonable model for scenarios of practical interest. The notion of

optimality we analyze, the round trip rate, is closely aligned to the running time of practical PT

algorithms; see Section 3.

Our second contribution is the asymptotic analysis of the round trip rate in which the number

of parallel chains and cores is taken to infinity (Sections 4-5). This novel asymptotic regime is

highly relevant to modern computational architectures such as GPUs and distributed computing,

and yields several additional results both theoretical and practical:

1. In particular, we show in Section 4 that in the non-reversible regime (DEO) for challenging

sampling problems one should use at least as many chains as the number of cores available.

This contrasts with the reversible algorithm SEO, where adding more chains, even in a multi-

core setup, is eventually detrimental. In other words, for this non-reversible PT algorithm,

the optimal tuning recommendations are qualitatively different compared to reversible PT

algorithms.

2. While adding more parallel cores to the task improves the performance of non-reversible PT,

we show formally that there is a diminishing return in doing so for large N . We quantify

this diminishing return using both non-asymptotic bounds as well as an asymptotic analysis

letting both the dimension of the problem and the number of chains go to infinity (Section

4.1 and 4.2 respectively).

3. In Section 5 we analyze optimal annealing schedules using our high parallelism asymptotics.

We then develop a novel adaptive scheme (Procedure 3), which is both experimentally effective

and simple to implement.

Our third contribution is a novel analysis of the scaling limit for the annealing parameter

trajectories as the number of parallel chains goes to infinity (Section 6). We show that non-

reversible PT scales weakly to a Piecewise Deterministic Markov Process (PDMP) under realistic

4

conditions, contrasting with the diffusive limit we obtain for reversible PT. This offers intuition

explaining the fundamental differences observed between the round trip rates for non-reversible

and reversible PT as discussed in Section 3.4 and 4.2. The rate parameter of the limiting PDMP

is intimately connected to our adaptive scheme and provides more intuition on its behaviour.

Finally in Section 7, we present a variety of experiments to validate and extend our theoretical

analysis. We compare the performance of our non-reversible scheme with other state-of-the-art

adaptive PT methods. We also provide empirical evidence that our adaptive scheme is robust to

situations where a simplifying assumption used to carry out our theoretical analysis is violated.

Literature review. Previous theoretical studies analyzed the asymptotic behaviour of stan-

dard PT based on a target consisting of a product of independent components of increasing di-

mension [ARR11], or an increased swap frequency relative to a continuous time sampling pro-

cess [DLPD12]. We instead let the number of cores available in a massively parallel setup go to

infinity. One advantage of our approach is that, in contrast to these previous analyses, we do not

need to make assumptions on the structure of neither the target distribution (such as [ARR11]

where they assume the target distribution is a product of d independent and identical distributions

and d is large) nor the exploration kernels (such as [DLPD12], where the exploration kernel is

assumed to be driven by a class of stochastic differential equations).

The DEO algorithm was proposed in [OKOM01]. This algorithm was presumably devised on

algorithmic grounds (it performs the maximum number of swap attempts in parallel) since no

theoretical justification was provided and the non-reversibility of the scheme was not mentioned.

The arguments given in [LDMT09] to explain the superiority of DEO communication over various

PT algorithms rely on an erroneous assumption, namely a diffusive scaling limit. We show in this

work that the scaling limit of non-reversible PT is actually not diffusive as the number of parallel

chains goes to infinity. In particular, [LDMT09] still recommends to stop adding chains after a

target acceptance rate is achieved.

Another related PT algorithm is the Lifted Parallel Tempering algorithm (LPT), described

in [Wu17]; see [SH16] for a closely related idea developed in the context of simulated tempering,

and also [SBN13] for an earlier attempt to build a non-reversible PT scheme which was later shown

not to be invariant with respect to the distribution of interest [ZC14]. These strategies are based

on a common recipe to design non-reversible sampling algorithms, which consists in expanding

the state space to include a “lifting” parameter that allows for a more systematic exploration of

the state space [CLP99, DHN00, TCV11, Vuc16]. We will show here that both LPT and DEO

are actually closely related in that the marginal behaviour of individual chains under DEO is in

fact distributionally equivalent to the one LPT chain. In a multi-core/distributed context, the

DEO scheme therefore dominates LPT by having up to N/2 swaps per iteration whereas LPT only

performs one.

5

2 Setup and notation

2.1 Annealed distributions

Henceforth we will assume that the probability distributions π and π0 on X admit strictly positive

densities with respect to a common dominating measure dx. We will also denote these densities

somewhat abusively by π and π0. It will be useful to define V0(x) = − log π0(x) and V (x) =

− logL(x). Using this notation, the annealed distribution at an annealing parameter β is given by

π(β)(x) =
L(x)βπ0(x)

Z(β)
=
e−βV (x)−V0(x)

Z(β)
, (1)

where Z(β) =
∫
X L(x)βπ0(x)dx is the corresponding normalizing constant.

We denote an annealing schedule by 0 = β0 < β1 < · · · < βN = 1, and in our asymptotic analysis

we will view it as a partition P = {β0, . . . , βN} of [0, 1] with mesh-size ‖P‖ = supi {βi − βi−1}.
Given an annealing schedule P we define π(x), the joint distribution on the augmented space XN+1,

by

π(x) =
N∏
i=0

π(βi)(xi). (2)

2.2 Parallel tempering

In this section, we define formally the Markov kernels corresponding to the reversible (SEO) and

non-reversible (DEO) PT algorithms described informally in the introduction and in Figure 1. We

provide pseudo-code for the overall algorithm in Procedure 1.

The two phases of Parallel Tempering. For both SEO and DEO, the overall Markov kernel

KPT
n describing the algorithm is obtained by the composition of a exploration kernel Kexpl and a

communication kernel Kcomm
n ,

KPT
n = Kcomm

n Kexpl, (3)

where Kcomm
n Kexpl denotes the alternation of Kexpl followed by Kcomm

n , i.e. for any two transition

kernels K1 and K2, (K1K2)(x, A) =
∫

K1(x, dx′)K2(x′, A). The difference between SEO and DEO

is in the communication phase, namely Kcomm
n = KSEO in the former case and Kcomm

n = KDEO
n in

the latter. Both communication kernels are detailed further.

The exploration kernels. These are defined in the same way for both SEO and DEO. They are

also model specific, so we assume we are given one π(βi)-invariant kernel K(βi) for each annealing

parameter β0, β1, . . . , βN . These can be based on Hamiltonian Monte Carlo, Metropolis–Hastings,

Gibbs Sampling, Slice Sampling, etc. The exploration kernel of the prior chain can often be taken

to be π0, i.e. K(0)(x,A0) = π0(A0). We construct the overall exploration kernel by applying the

6

annealing parameter specific kernels to each component independently from each other:

Kexpl(x, A0 ×A1 × . . . AN) =
N∏
i=0

K(βi)(xi, Ai). (4)

Swap kernels. Before defining the communication scheme, it will be useful to first construct its

fundamental building block, the swap kernel K(i,j). A swap kernel is a Metropolis–Hastings move

with a deterministic proposal which consists of permuting two coordinates of a state vector. The

proposed state is denoted

x(i,j) = (x0, x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , . . . , xN). (5)

The Metropolis–Hastings acceptance ratio of this proposal is given by

α(i,j)(x) = min

{
1,

π
(
x(i,j)

)
π(x)

}
(6)

= exp
(
min{0, (βj − βi)(V (xj)− V (xi))}

)
. (7)

Let K(i,j) denote the Metropolis-Hastings kernel corresponding to this update:

K(i,j)(x, A) =
(

1− α(i,j)(x)
)
δx(A) + α(i,j)(x)δx(i,j)(A), (8)

where δx denotes the Dirac delta.

The Odd and Even kernels. These kernels are maximal groups of swap moves such that members

of the group do not interfere with each other. See Figure 1 for an illustration. We first define the

even and odd indices:

E = {i : 0 ≤ i < N, i is even}, (9)

O = {i : 0 ≤ i < N, i is odd}. (10)

The corresponding even and odd kernels Keven and Kodd are then given by

Keven =
∏
i∈E

K(i,i+1), Kodd =
∏
i∈O

K(i,i+1). (11)

The communication kernel for SEO and DEO. For SEO, the kernel Kcomm
n = KSEO is given

by a mixture of the odd and even kernels in equal proportion:

KSEO =
1

2
Kodd +

1

2
Keven. (12)

For DEO, the kernel Kcomm
n = KDEO

n is given by a deterministic alternation between odd and even

7

Figure 2: Illustration of the proposal, acceptance and swap indicators on a non-reversible realization.

kernels. This is encoded by the following time heterogeneous kernel

KDEO
n =

Keven if n is even,

Kodd if n is odd.
(13)

Proposal and swap indicators. In our theoretical analysis it will be useful to re-express the

exploration kernels in the following equivalent fashion. Let

Pn =
(
P (0,1)
n , P (1,2)

n , . . . , P (N−1,N)
n

)
, (14)

where P
(i,j)
n denotes an indicator that a swap is proposed (attempted) between chains i and j at

iteration n. In DEO, Pn is deterministic, i.e. Pn = Peven = (1, 0, 1, . . .) for even n and Pn =

Podd = (0, 1, 0, . . .) for odd n. In SEO, Pn ∼ Unif{Peven,Podd}. We also set P
(i+1,i)
n = P

(i,i+1)
n .

To avoid having too many subscripts, we use the same random variables for SEO and DEO but

differentiate their behaviour by using two different probability measures PSEO and PDEO with

associated expectation operators ESEO and EDEO. We use P and E for statements that hold for

both algorithms.

The swap proposals are then defined from the proposal indicators as

S(i,j)
n = P (i,j)

n A(i,j)
n , (15)

where A
(i,j)
n |Xn ∼ Bern(α(i,j)(Xn)) are acceptance indicator variables (see Figure 2). The equiva-

lence between Kexpl and this representation is given by

Xn+1|Xn ∼ Kexpl(Xn, ·)⇐⇒ Xi
n+1 =


X

(i+1)
n if S

(i,i+1)
n = 1,

X
(i−1)
n if S

(i,i−1)
n = 1, for all i ∈ 0, ..., N.

Xi
n otherwise,

(16)

8

Permutation augmentation. Another useful construction is to add a permutation to the state

space to keep track of the cumulative effect of the swaps. The augmented state space becomes

XN+1 × Perm([N]), where Perm([N]) denotes the group of bijections of {0, 1, 2, . . . , N}. A first

instance where this construction is useful is in the context of PT algorithms distributed over several

compute nodes or machines. In this context a key implementation point is that instead of having

pairs of machines exchanging states when a swap is accepted (which could be detrimental due to

network latency and lower throughput), the machines should exchange annealing parameters. If

0, 1, 2, . . . , N are indices for N + 1 machines, then the permutation σn ∈ Perm([N]) at iteration n

encodes that machine i is currently responsible for annealing parameter βσn(i). Formally, the swap

kernel in the augmented space is defined as:

K(i,j)(x̄, A× {σ′}) =
(

1− α(i,j)(x)
)
δx(A)I[σ′ = σ] + α(i,j)(x)δx(i,j)(A)I[σ′ = (i j) ◦ σ], (17)

where x̄ = (x, σ) denotes an augmented state, (i j) ∈ Perm([N]) denotes a transposition (swap)

between i and j, and (i j)◦σ is the composition of σ followed by the swap (i j). We abuse notation

here and denote the kernel in the augmented space with the same symbol. The exploration kernel

does not cause swaps, so in the permutation-augmented space we set it to

Kexpl((x, σ), A0 ×A1 × . . . AN × {σ′}) = I[σ′ = σ]Kexpl(x, A0 ×A1 × . . . AN),

with a similar abuse of notation.

Invariant distribution. The kernels Kexpl,KSEO,KDEO
n and hence KPT

n are all invariant with

respect to

π̄(x, σ) =
1

(N + 1)!
π(x). (18)

See Appendix A for details.

Non-reversibility of DEO. Written as an homogeneous Markov chain, DEO takes the form

KevenKexplKoddKexpl. If N > 1, this kernel is in general non-reversible (it satisfies global balance

but not detailed balance). Examples violating detailed balance can be constructed using a uniform

likelihood, L(x) ∝ 1, in which case π = π0 and swaps are systematically accepted. Non-reversibility

will be explored more deeply in Section 3.3.

Reversibility of SEO. Let us assume that the exploration kernel can be decomposed as Kexpl =

K1/2K1/2. This is a reasonable assumption: often Kexpl is itself a composition of nexpl exploration

passes, we are just assuming here that nexpl is even. In this case, it is reasonable to analyse the

kernel K1/2KSEOK1/2. Since this kernel is palindromic, if K1/2 is reversible then the palindrome is

also reversible. We will refer to the PT algorithm with SEO and DEO communication as reversible

PT and non-reversible PT respectively even when Kexpl is non-reversible.

9

Procedure 1 Non-reversible PT (number of scans n, annealing schedule P)

1: r̂(i,i+1) ← 0 for all i ∈ {0, 1, . . . , N − 1} . Swap rejection statistics used in 5.4 to adapt
2: x← x0 . Initialize chain
3: for t in 1, 2, . . . , n do
4: for k in 1, 2, . . . , nexpl do
5: x′ ∼ Kexpl(x, ·) . Exploration phase (embarrassingly parallel)
6: x← x′

7: if t is even then . Non-reversibility inducing alternation
8: S ← E . Equation (9)
9: else

10: S ← O . Equation (10)

11: for i in 0, . . . , N − 1 do . Communication phase (embarrassingly parallel)
12: α← α(i,i+1)(x)
13: r̂(i,i+1) ← r̂(i,i+1) + (1− α)
14: A ∼ Bern(α)
15: if i ∈ S and A = 1 then
16: (xi, xi+1)← (xi+1, xi) . Equation (7).

17: xt ← x

18: r̂(i,i+1) ← r̂(i,i+1)/n for all i ∈ {0, 1, . . . , N − 1} . Equation (57)
19: return (x1, . . . ,xn), (r̂(0,1), . . . , r̂(N−1,N))

2.3 Annealing trajectories and the index process

Chains and replicas. We will refer to the sequences Xi
n and X

σn(i)
n , as the i-th chain and replica

respectively. The i-th chain tracks the sequence of states with annealing parameter βi and the

replica tracks the sequence of states on machine i.

Annealing trajectories. Closely related to the replica, we define the annealing trajectory for

index i by Bi
n = βσn(i). As discussed in the last section, index i can be interpreted as a machine in

a distributed context. We will use the notation Bn when i is unimportant. The annealing trajec-

tory tracks the sequence of annealing parameters that machine i is responsible of, as a function of

the iteration index n. The concept is best understood visually: refer to the bold piecewise linear

path in Figure 1. We shall see in Section 3 that annealing trajectories encode the impact of the

communication kernel in PT algorithms, and will allow us to illuminate fundamental differences

between reversible and non-reversible PT.

Index process. To analyse the annealing trajectory Bi
n = βσn(i), it will be equivalent and easier

to study the sequence Iin = σn(i). For the remainder of this section we will introduce an alternative

recursive construction to give intuition on the dynamics of Iin. This recursion forms the basis for

the analysis in the rest of the paper.

We define the index process for machine i as Y i
n = (Iin, ε

i
n) ∈ {0, . . . , N} × {−1, 1} and use the

notation Yn = (In, εn) when i is unimportant. Initialize I0 = i and ε0 = 1 if P
(i,i+1)
0 = 1 and

10

ε0 = −1 otherwise. For n > 0, we have

In+1 =

In + εn if S
(In,In+εn)
n = 1,

In otherwise,
(19)

and,

εn+1 =

1 if P
(In+1,In+1+1)
n = 1,

−1 otherwise.
(20)

The variables εn represent the direction Bn proposed at iteration n. For SEO communication,

the variables εn are independent and identically distributed and equal to 1 or −1 with equal

probability, and consequentially the annealing trajectories exhibit a random walk behaviour. In

contrast for DEO communication, we have εn+1 = εn so long as the proposal involving replica i was

accepted and εn+1 = −εn otherwise. Therefore annealing trajectories for non-reversible PT have a

persistence in one direction and only change when a swap involving replica i is rejected or if the

boundary is reached. The qualitative differences between the two regimes can be seen in Figure 1.

3 Non-asymptotic analysis of PT

In this section, we motivate a formal notion of computational efficiency for SEO and DEO, the

round trip rate, denoted τSEO and τSEO for the two algorithms, and provide conditions under which

non-reversible DEO is guaranteed to perform better than its reversible counterpart, τSEO ≤ τDEO.

3.1 Model of compute time

We start with a definition of what we model as one unit of compute time: throughout the paper,

we assume a massively parallel computational setup, and hence that sampling once from each of

the kernels Kexpl, KDEO
n and KSEO takes one unit of time, independently of the number of chains

N + 1.

This assumption is realistic in both GPU and parallel computing scenarios, since the commu-

nication cost in PT only involves pairs of neighbours, and moreover does not increase with the

dimensionality of the problem (as explained when we introduced the permutation augmentation

in Section 2.2). In particular, all simulations considered in this work involve at most an order

of tens to hundreds of chains (see for example Fig 16 for an example with up to 640 chains), so

they are within reach of current commodity hardware: for example GPUs used in modern scientific

applications often have roughly 1,000—5,000 cores as of 2019.

We also assume that the number of MCMC iterations will still dominate the number of parallel

core available, i.e. n� N . This is reasonable since the focus of this paper is in challenging sampling

problems.

Empirical studies on multi-core and distributed implementation of PT are numerous [ADHR04,

MB12,FFT+14]. However, despite its practical relevance, we are not aware of previous theoretical

11

work investigating this computational model for PT. From now on, all analysis and recommenda-

tions in this paper assume a parallelized or distributed setup.

3.2 Performance metrics for PT methods

The standard notion of computational efficiency of MCMC schemes is the effective sample size (ESS)

per compute time [Fle08]. However, for PT methods, since the ESS per compute time depends on

the details of the exploration kernels K(βi), alternatives have been developed in the literature. These

alternative metrics allow us to give a representative analysis of PT as a “meta-algorithm” without

reference to the specifics of the exploration kernels. In this section we motivate and describe the

round trip rate, one such PT performance metric popular in the PT literature [KTHT06,LDMT09].

The notion of round trip rate seems a priori somewhat disconnected to ESS per compute time, so

we first introduce a more intuitive notion, the restart rate, and then show that the restart and

round trip rates are essentially equivalent.

Tempered restarts. Our definition of a tempered restart is motivated by situations where the

prior chain (β = 0) provides one independent sample at each iteration. In this context, notice

that each sample from the prior chain will either “succeed” in getting propagated to the posterior

chain (β = 1), or “fail” and come back to the prior chain. The number of tempered restarts Tn
is defined as the number of distinct independent samples generated by the prior chain which are

successfully propagated, via communication and exploration steps, to the posterior chain during

the first n iterations. This notion of optimality is not the full picture since intermediate chains

also perform exploration, but nonetheless captures the essence of difficult multi-modal problems

where only an independent initialization combined with successive exploration and communication

steps can reach distinct modes in reasonable computational time. Informally, a tempered restart

can be thought of as a sampling equivalent to what is known in optimization as a random restart.

We define the restart rate as τrestart = limn→∞ E[Tn]/n. Note also that each tempered restart is

carried by one of the N + 1 annealing trajectories, so we can decompose the tempered restarts as

Tn = T 0
n + T 1

n + · · ·+ T Nn .

Round trips. Next, we say a round trip has occurred for replica i when the annealing trajectory

for replica i successfully increases from β = 0 to β = 1 and back to β = 0. Formally, we recursively

define T i↓,0 = inf{n : (Iin, ε
i
n) = (0,−1)} and for k ≥ 1,

T i↑,k = inf{n > T i↓,k−1 : (Iin, ε
i
n) = (N, 1)}, (21)

T i↓,k = inf{n > T i↑,k : (Iin, ε
i
n) = (0,−1)}. (22)

We say the k-th round trip for replica i occurred at iteration T i↓,k. Let Rin denote the num-

ber of round trips for replica i in the first n iterations, and Rn = R0
n + R1

n + · · · + RNn be the

total number of round trips. We define the round trip rate as τround trip = limn→∞ E[Rn]/n.

12

This metric is commonly used in the literature to compare the effectiveness of various PT algo-

rithms [KTHT06,LDMT09].1

Equivalence: each restart, except possibly for the last one, coincides with a round trip in one of the

annealing trajectories. Hence, T in ≤ Rin ≤ T in+1, so Tn ≤ Rn ≤ Tn+N , and τ = τround trip = τrestart.

Alternative PT performance metrics. Another performance metric used in the PT literature

is the expected square jump distance (ESJD) [ARR11,KK05], defined as

ESJD = E
[
(βI+1 − βI)2 α(I,I+1)(X)

]
, (23)

where I ∼ Unif{0, 1, 2, . . . , N} and X ∼ π. While this criterion is useful within the context

of reversible PT for selecting the optimal number of parallel chains, it is too coarse to compare

reversible against non-reversible PT methods. Indeed, for any given annealing schedule, the EJSD

for DOE and SEO are identical. More generally, the metric is less directly aligned to the quantity

practitioners care about, which is the restart rate.

The work of [CS11] proposes to use the relaxation time of the process In. However, in our

context this ignores the special structure of the chain at β = 0, which is an independent sequence

of random variables distributed according to π0.

3.3 Index process as a Markov chain

The analysis of the round trip times is in general intractable because the index process Yn is not

Markovian. This is because simulating a transition depends on the acceptance indicators A
(i,i+1)
n

(see Equation (15)), the distributions of which themselves depend on the full state configuration

X. If we further assume that the sequence Xn is stationary and the exploration kernel is “locally

efficient,” as defined below, we obtain that the index process Yn is actually Markovian, and this will

allow us to analytically compute round trip rates for both SEO and DEO communication schemes.

We formally outline these assumptions below.

Stationarity. We assume X0 ∼ π and thus Xn ∼ π for all n as the kernel KPT
n is π-invariant.

An important observation that follows from assuming the stationarity regime is that the marginal

behaviour of the communication scheme only depends on the distribution of the state Xn via

N + 1 univariate distributions, namely the N + 1 distributions of the chain-specific energies V (i) =

V
(
X(i)

)
, i ∈ {0, 1, 2, . . . , N}. To see why, note that if Xn ∼ π, then by the definition of the

stationary distribution, and Equation (7), the random variables V (i) are independent, and

α(i,i+1)(X) = exp
(

min
{

0, (βi+1 − βi)
(
V (i+1) − V (i)

)})
. (24)

Remarkably, this observation allows us to build a theoretical analysis of PT which makes no as-

1In [KTHT06,LDMT09] the round trip rate per annealing trajectory was optimized, i.e. τround trip/(N + 1).

13

sumption on the nature of the state space X . In contrast, previous work such as [ARR11] assumed

a product space X = X d0 for large d.

Efficient Local Exploration (ELE). Let V and V ′ denote the negative log-likelihood before and

after an exploration step for any chain i, V = V (X), V ′ = V (X ′) for X ∼ π(βi), X ′|X ∼ K(βi)(X, ·).
The ELE assumption posits that V and V ′ are independent.

This condition is more reasonable than it may appear at first glance and it is weaker than as-

suming that X and X ′ are independent as typically done in the literature [ARR11,RR14]. Consider

for example a scenario where we seek to explore the posterior distribution of a mixture model with

symmetries induced by label switching. In such cases, being able to design exploration kernels such

as V and V ′ are approximately independent can be understood as being able to efficiently visit a

neighbourhood of one of the local maxima. In contrast, being able to sample X ′ independently

from X would defy the need for using PT in the first place.

These two assumptions are assumed to hold throughout the paper. The assumptions are not

expected to be exactly satisfied in real problems. However, they provide the foundations of a model

for PT algorithms. We validate the predictions made by the model in Section 7.2 and empirically

show robustness in performance even when the ELE assumption is violated. We also provide an

heuristic argument to explain why our theoretical results appear robust to ELE violations for non-

reversible PT. Moreover, the model is used to make algorithm optimization choices such as picking

annealing parameters, and even if a slightly suboptimal PT algorithm is used, this PT algorithm

still exactly targets the distribution of interest. Previous work on analyzing PT has also made

modelling assumptions that are not expected to hold in practice but yield useful guidelines.

Markov transition kernel for the index process. Under ELE, we can express the accep-

tance indicators as independent Bernoulli random variables A
(i,i+1)
n ∼ Bern(s(i,i+1)). The constant

s(i,i+1) is given by the expectation of Equation (24),

s(i,i+1) = E
[
α(i,i+1)(X)

]
= E

[
exp

(
min

{
0, (βi+1 − βi)

(
V (i+1) − V (i)

)})]
, (25)

where the expectation is over two independent random variables V (i), V (i+1), satisfying V (i) d
=

V (X(βi)) for X(βi) ∼ π(βi). From this, we obtain that Yn = (In, εn) is Markovian under ELE by

mirroring the construction in Section 2.3.

For SEO, initialize I0 = i and ε0 ∼ Unif{−1, 1}. Define the Markov transition kernel, Yn+1|Yn ∼
PSEO(Yn, ·) via chain rule in two steps. In the first step, simulate

In+1|Yn = (i, ε) ∼

(i+ ε) ∧N ∨ 0 with probability s(i,i+ε),

i otherwise,
(26)

where the expression “∧N ∨ 0” enforces the annealing parameter boundaries. In the second step,

independently sample εn+1 ∼ Unif{−1,+1}.

14

Similarly for DEO, initialize I0 = i and ε0 = 1 if i is even and −1 otherwise. Analogous to the

SEO construction, we define Yn+1|Yn ∼ PDEO(Yn, ·) via chain rule in two steps. We first update

In+1|Yn = (i, ε) same as (26), but in the the second step we apply the deterministic update,

εn+1 =

ε if In+1 = i+ ε,

−ε otherwise.
(27)

The lifted property of non-reversible PT. By inspection, we have for y, y′ ∈ {0, . . . , N} ×
{−1, 1}

PSEO(y, y′) = PSEO(y′, y), (28)

implying that PSEO is reversible with respect to the uniform stationary distribution. In fact, since εn

are independent and identically distributed, In by itself is a reversible Markov process for SEO. The

index process for SEO has been analysed in this context by [NH07], where a master equation for In

was heuristically assumed to hold. However this approach does not provide a good approximation

to the DEO case since, even if one assumes ELE, the process In is not Markovian in contrast to

the index process Yn = (In, εn). However, contrary to the SEO case, the index process does not

satisfy the detailed balance condition (28) but the following skew-detailed balance condition,

PDEO(y, y′) = PDEO(R(y′), R(y)), (29)

where R(i, ε) = (i,−ε). This implies that the index process for DEO falls within the generalized

Metropolis–Hastings framework outlined in [LSR10, Wu17], and is non-reversible with respect to

the uniform distribution.

Reversibility necessitates that the constructed MCMC chain must be allowed to backtrack

its movements, which leads to inefficient exploration of the state space. As a consequence, non-

reversibility is typically a favourable property for MCMC chains. One popular approach to design

non-reversible MCMC samplers is to enlarge the state space with a “lifting parameter” which breaks

reversibility and forces persistency in exploration [CLP99,DHN00].

We can interpret the index process Yn = (In, εn) for DEO communication as a “lifted” version

of the index process for SEO with lifting parameter εn. In DEO communication, In travels in the

direction of εn and only reverses direction when In reaches a boundary or when a swap rejection

occurs. This idea was first explored by [Wu17] in the context of parallel tempering.

Consequentially, this “lifted property” built into DEO trajectories explains the qualitatively

different behaviour between SEO and DEO. In Section 3.4 we will formally show that DEO an-

nealing trajectories perform round trips in O(N) PT iterations whereas SEO annealing trajectories

require instead O(N2) PT iterations. We will also show in Section 6 that the scaling behaviour of

the index process for reversible and non-reversible PT are qualitatively different, in particular for

non-reversible PT, the index process is non-diffusive in contrast to its reversible counterpart.

15

3.4 Non-asymptotic domination of non-reversible PT

Based on our two assumptions, we will be able to compute explicit formulae for the round trip rates

PT with DEO and SEO communication (and hence restart rates). Using the fact that the index

process is Markovian, we can rewrite the round trip rate via an expected hitting time of In, and

then provide analytic expressions for the expected hitting times of index process Yn for both DEO

and SEO communication based on its transition probabilities. This yields that non-reversible PT

outperforms reversible PT for any annealing schedule.

Computation of the round trip rate. We defined our notion of optimality τ using an asymptotic

expression in the number of iteration n. Our first goal is to obtain an analytic and non-asymptotic

expression for τ for a given annealing schedule P. As we will show shortly, the choice of schedule

P enters in the said analytic expression in terms of a schedule inefficiency defined as a sum of

rejection odds:

E(P) =
N∑
i=1

r(i−1,i)

1− r(i−1,i)
, (30)

where r(i−1,i) = 1− s(i−1,i) is the probability of rejecting a swap.

To achieve our first goal, we note that for each i = 0, . . . , N , Rin is delayed renewal processes

with inter-arrival times T ik = T i↓,k − T i↓,k−1 for k ≥ 1 and i = 0, . . . , N . In particular, T ik are

independent and identically distributed with common distribution T . The key renewal theorem

then implies

τ =

N∑
i=0

lim
n→∞

E[Rin]

n
=
N + 1

E[T]
. (31)

The following proposition gives us analytical expressions for the expected round trip times of PT

with SEO and DEO communication respectively in terms of the schedule inefficiency. The proof

can be found in Appendix B.

Proposition 3.1. For any annealing schedule P = {β0, . . . , βN},

ESEO[T] = 2(N + 1)N + 2(N + 1)E(P), (32)

EDEO[T] = 2(N + 1) + 2(N + 1)E(P). (33)

The first term of (33) is the minimum number of swaps needed for a round trip to occur with

no rejections. In contrast, the first term in (32) is the expected number of steps needed for a simple

random walk on P of size N +1 to make a round trip. The second term of (32) and (33) represents

the expected impact of rejected swaps on the round trip times.

Intuitively, E[T] can be interpreted as the expected number of scans required before the first

replica achieves a round trip. Therefore we should Proposition 3.1 implies we need O(N) scans for

16

non-reversible PT before the first round trip occur. This is in contrast to the O(N2) scans required

for reversible PT.

Corollary 3.2. For any annealing schedule P we have

τSEO(P) :=
N + 1

ESEO[T]
=

1

2N + 2E(P)
, (34)

τDEO(P) :=
N + 1

EDEO[T]
=

1

2 + 2E(P)
, (35)

so τSEO(P) ≤ τDEO(P).

4 Asymptotic analysis of PT

While the main result from the previous section ranks the performance of DEO communication

relative to SEO communication, it does not provide insight on the absolute performances of these

schemes, because of the inefficiency term E(P).

Overview. In this section, we provide asymptotic estimates of E(P) as ‖P‖ → 0. The main result

in this section is that the round trip rate τSEO(P) of the reversible PT decays to zero. This in

contrast to the non-reversible PT, where τDEO(P) asymptotically increases (as defined below) to a

positive constant τ̄ . Moreover, we provide a characterization of τ̄ in terms of a “communication

barrier”, Λ, measuring the deviance of π from π0. We show both τ̄ and Λ can be estimated from

the MCMC trace in Section 5 and can be used as the basis of schedule adaptation schemes.

4.1 The communication barrier

We begin by analyzing the behaviour of the PT swaps as ‖P‖ goes to zero. In order to do so, we

define the swap and rejection functions s, r : [0, 1]2 → [0, 1] respectively as,

s(β, β′) = E
[
exp

(
min{0, (β − β′)(V (β) − V (β′))}

)]
, (36)

r(β, β′) = 1− s(β, β′), (37)

where V (β) d
= V (X(β)) for X(β) ∼ π(β) are independent. The quantities s(β, β′) and r(β, β′) are

symmetric in their arguments and represent the probability of swapping and rejection occurring

between β and β′ under the ELE assumption. Note that s(i−1,i) = 1− r(i−1,i) = s(βi−1, βi).

Local communication barrier. To take the limit as ‖P‖ → 0, it will be useful to understand the

behaviour of s(β, β′) when β ≈ β′. The key quantity that drives this asymptotic regime is given

by a function λ : [0, 1]→ R+ defined as

λ(β) =
1

2
E
[
|V (β)

1 − V (β)
2 |

]
, (38)

17

where V
(β)

1 , V
(β)

2 are independent random variables with common distribution V (β). We will use the

following estimate for s(β, β′) derived in the context of the design of a different class of tempering

models used in the physics literature called incomplete beta function laws [PPC04].

Theorem 4.1. [PPC04] For β ≤ β′, let β̄ = β+β′

2 and δ = β′ − β. Suppose V 3 is integrable with

respect to π0 and π then we have,

s(β, β′) = 1− δλ(β̄) +O(δ3), (39)

r(β, β′) = δλ(β̄) +O(δ3). (40)

Theorem 4.1 shows that λ encodes up to third order the behaviour of s and r as the annealing

parameter difference between the chains goes to 0. Since r(β, β) = 0, Theorem 4.1 implies that

λ(β) can be expressed equivalently as the instantaneous rate of rejection of a proposed swap at

annealing parameter β,

λ(β) = lim
δ→0+

r(β, β + δ)− r(β, β)

δ
. (41)

Note that r(β, β′) is small when π(β) ≈ π(β′), which combined with Theorem 4.1 and (41) implies

λ(β) measures how sensitive π(β) is to perturbation in β.

Replica with annealing trajectory Bn will have very little difficulty accepting swaps when λ(Bn)

is small and will suffer from high rejection rates in regions when λ(Bn) is large. Since chains com-

municate only when swaps are successful, λ(β) measures the difficulty of communication at β.

Global communication barrier. When β < β′, δλ(β̄) is the Riemann sum for
∫ β′
β λ(b)db with a

single rectangle. If λ ∈ C2([0, 1]), then standard midpoint rule error estimates yield∣∣∣∣∣
∫ β′

β
λ(b)db− δλ(β̄)

∣∣∣∣∣ ≤ 1

12

∥∥∥∥d2λ

dβ2

∥∥∥∥
∞
δ3. (42)

Proposition 4.2 implies that the regularity of λ is controlled by the moments of V with respect to

π and π0.

Proposition 4.2. If V k is integrable with respect to π0 and π, then λ ∈ Ck−1([0, 1]).

By applying Proposition 4.2, we can substitute (42) into Theorem 4.1, to obtain the following

corollary.

Corollary 4.3. If V 3 is integrable with respect to π and π0, we have

s(β, β′) = 1−
∫ β′

β
λ(b)db+O(δ3), (43)

r(β, β′) =

∫ β′

β
λ(b)db+O(δ3). (44)

18

Motivated by Corollary 4.3 we will henceforth assume that V 3 is integrable with respect to π0

and π and define Λ : [0, 1]→ R+ by

Λ(β) =

∫ β

0
λ(β′)dβ′. (45)

We denote Λ = Λ(1) as the global communication barrier.

Remark 4.4. Notice that Λ ≥ 0 with equality if and only if λ(β) = 0 for all β ∈ [0, 1]. It can be

easily verified from (38) that λ = 0 if and only if V (β) is constant π(β)-a.s. for all β ∈ [0, 1] which

happens precisely when π0 = π. So Λ defines a natural symmetric divergence and measures the

difficulty of communication between π0 and π.

High-dimensional scaling of communication barrier. We now determine the asymptotic

behaviour of λ and Λ when the dimension of X is large. To make the analysis tractable, we

assume that πd(x) =
∏d
i=1 π(xi) as in [ARR11,RR14]. This provides a model for weakly dependent

high-dimensional distributions.

The corresponding tempered distributions are thus given by

π
(β)
d (x) =

d∏
i=1

π(β)(xi) ∝ exp

(
−β

d∑
i=1

V (xi)−
d∑
i=1

V0(xi)

)
. (46)

Let λd and Λd be the local and global communication barriers for πd respectively. It follows from

Proposition 4.5 that λd and Λd increase at a rate of O(d1/2) as d→∞.

Proposition 4.5 (High Dimensional Scaling). Define σ2(β) = Var(V (β)), then for all β ∈ [0, 1],

we have as d→∞,

λd(β) ∼
√
d

π
σ(β) (47)

and,

Λd ∼
√
d

π

∫ 1

0
σ(β)dβ. (48)

Remark 4.6. We emphasize that we make only this structural assumption on the state space and

distribution for Proposition 4.5. All the other results presented in this work are agnostic to the

structure of the X and π.

4.2 Asymptotic analysis of round trip rate

Suppose PN is a sequence of annealing schedules of size N +1 such that PN ⊂ PN+1. By Corollary

3.2 we can asymptotically characterize the behaviour of the round trip rate as ‖PN‖ → 0 through

19

the schedule inefficiency E(PN).

Asymptotic increasing sequence. In this section we will use the following two definitions: first,

we write an . bn as n → ∞ if and only if there is cn such that an ≤ cn and cn ∼ bn as n → ∞.

Second, we say an is asymptotically decreasing (respectively asymptotically increasing) if an+1 . an

(respectively an . an+1).

Proposition 4.7. If ‖PN‖ → 0, then E(PN) asymptotically decreases to Λ at a rate of O(‖PN‖).

A consequence of Proposition 4.7 and Corollary 3.2, we obtain the following key result.

Corollary 4.8. Suppose ‖PN‖ → 0 as N →∞.

(a) The round trip rate τSEO goes to zero:

τSEO(PN) ∼ 1

2N
→ 0. (49)

(b) The round trip rate τDEO asymptotically increases at a O(‖PN‖) rate to the following upper

bound:

τDEO(PN)→ τ̄ =
1

2 + 2Λ
> 0. (50)

By Remark 4.4, Λ is large when π0 deviates significantly from π, therefore we expect a higher

round trip rate when the prior is chosen to be a good approximation to the target. Since Λ is

problem specific, this identifies a limitation of PT present even in its non-reversible flavour, namely

that adding more cores to the task will never be harmful, but does have a diminishing return. The

bound τ̄ = (2+2Λ)−1 could be very small for complex problems. Moreover, it is independent of the

choice of annealing schedule, hence this bound cannot be improved by the algorithmic optimizations

described in Section 5. Thankfully, the more classical asymptotic perspective in Proposition 4.5

shows that Λ is expected to grow as the square root rate of the dimensionality d in a certain special

cases where the state space is a product space, X d. Hence we expect that weakly dependent high

dimensional problems will have a moderate Λ and τ̄ is expected to decrease at a O(d−1/2) rate.

5 Tuning non-reversible PT algorithms

Context. So far, in addition to showing the superiority of the non-reversible communication

scheme DEO, we have established that in the massively parallel regime, non-reversible PT will

benefit from utilizing at least as many cores as available. Moreover, by Equation (50), asymptot-

ically, the choice of annealing schedule P does not matter as long as its mesh size goes to zero.

However, given a finite number of available cores, there are still gains to be made by optimizing the

annealing schedule. In this section, we introduce a novel approach to this optimization problem,

20

which relies on the communication barrier λ.

Section overview. We first show that, under reasonable assumptions, the optimal annealing

schedule maximizing the round trip rate is obtained by having a constant rejection rate be-

tween chains. This “equi-acceptance” result is not surprising given that other theoretical frame-

works and notions of efficiency also obtained recommendations involving equal acceptance rate

between chains [ARR11, KTHT06, LDMT09, Kof02, PPC04]. However implementing this equi-

acceptance recommendation in practice is non-trivial. Previous work relied on Robbins-Monro

schemes [ARR11, MMV13], which introduce several tuning parameters. Our second result in this

section is an easy to implement scheme to achieve equi-acceptance, based on the communication

barrier λ. The third result in this section is to show that this function λ : [0, 1]→ R can be easily

estimated from the MCMC output, hence creating an end-to-end method for non-reversible PT

tuning.

Relation to previous work. We reiterate an important difference in the non-reversible PT tuning

process compared to previous work. In the existing literature, focusing on reversible and/or serial

computation, deciding the number of chains N was done as part of the tuning process. Here, in the

context of difficult sampling problem we instead assume that the number of chains is taken to be as

large as possible and hence determined by the characteristics of a massively parallel architecture.

Given this N , we build an equi-acceptance annealing schedule.

5.1 Optimal round trip rate

In this section we show that for a fixed large number of chains N > Λ, having equal swap acceptance

probabilities maximizes the following optimization program over annealing schedules P:

maximize: τDEO(P)

subject to: |P| = N + 1.
(51)

To approach this optimization, we first use Corollary 3.2 to rewrite the maximization of the round

trip rate τDEO(P) into a minimization of the schedule inefficiency, E(P). Recall that E(P) is

defined in Equation (30) as the sum of rejection odds r(i−1,i)/(1 − r(i−1,i)) over the pair of chains

(i−1, i). Hence, we can rewrite the optimization objective in terms of the variables ri = r(i−1,i). To

get a tractable approximate characterization of the feasible region of r1, r2, . . . , rN , we use Corollary

4.3, which implies that for all schedules P we have for ri = r(βi−1, βi),

N∑
i=1

ri = Λ +O
(
N‖P‖3

)
. (52)

21

Therefore assuming ‖P‖ is small enough to ignore the error term in (52), finding Poptimal is ap-

proximately equivalent to solving the following optimization problem:

minimize:
N∑
i=1

ri
1− ri

subject to:

N∑
i=1

ri = Λ,

ri ≥ 0.

(53)

This can be solved using Lagrange multipliers and leads to a solution where r∗i is constant in i. We

denote this constant by r∗.

5.2 Optimal annealing schedule

The previous section established that for a fixed N > Λ, we should target an equi-acceptance

annealing schedule. However, algorithmically we need to perform the optimization over the actual

annealing parameters βi in order to be able to run the PT simulation. Assuming we know λ for

now (and we show how to estimate it in the next section), the idea is that to obtain the optimal

schedule Poptimal = {β∗0 , . . . , β∗N}, we partition the interval [0, 1] such that the area under the curve

λ between successive β∗i and β∗i+1 is constant and equal to r∗.

Computing β∗k from communication barrier. To formalize this intuition, recall that for the

optimal schedule Poptimal of size N + 1, we have ri = r∗ for all i which by (52) satisfies,

r∗ =
Λ

N
+O(‖P‖3). (54)

By Corollary 4.3 we have for all i = 0, . . . , N ,

r∗ =

∫ β∗i

β∗i−1

λ(β)dβ +O(‖P‖3). (55)

If we equate (54) and (55) while ignoring the O(‖P‖3) error terms and sum from i = 0, . . . , k we

get,

Λ(β∗k) ≈ Λ
k

N
. (56)

The problem of numerically solving Equation (56) for β∗k is similar to that of finding the k/N

quantiles corresponding to a random variable with CDF Fλ(β) = Λ(β)/Λ. This suggests we want

to pick Poptimal with density proportional to λ.

22

5.3 Estimation of the communication barrier

Computing λ(β) or Λ(β) exactly via (38) is in general intractable. In this section, we present a

simple Monte Carlo approximation.

Setup: assume we have access to a collection of samples, X1,X2, . . . ,Xn, coming from a non-

reversible PT scheme based on an arbitrary annealing schedule PN of size N + 1 (see Procedure

1). These samples may come from a short pilot run, or, as described in the next section, from the

previous iteration of an adaptive scheme.

Estimation of optimal round trip rate τ̄ . Let βi ∈ P. Under ELE, we have the follow-

ing Monte Carlo estimates for the rejection rates:

r̂(i−1,i) =
1

n

n∑
k=1

α(i−1,i)(Xk) = r(i−1,i) +Op(n
−1/2). (57)

Next, we apply i times Corollary 4.3 on the pairs (β0, β1), (β1, β2), . . . , (βi−1, βi) and sum Equa-

tion (44), obtaining:

i∑
j=1

r(j−1,j) =
i∑

j=1

(∫ βj

βj−1

λ(b)db+O(‖P‖3
)

= Λ(βi) +O(N‖P‖3). (58)

This motivates the following approximation for Λ(βi),

Λ̂(βi) =
i∑

j=1

r̂(j−1,j), (59)

which assuming ELE has an error of Op(
√
N/n + N‖P‖3). In particular, we also arrive at a

consistent estimator τ̂ for the optimal round trip rate τ̄ ,

τ̂ =
1

2 + 2Λ̂
, (60)

where Λ̂ = Λ̂(1). In particular τ̂ allows us to diagnose if a low round trip is due to design choices

for PT, or due to π, π0 itself. We can compare the empirically observed round trip rate against τ̂

to determine how far our implementation deviates from optimal performance.

Estimation of Λ(β) and λ(β) via interpolation. Given the estimates Λ(β0), . . . ,Λ(βN) obtained

above, we estimate the function Λ(β) via interpolation, with the constraint that the interpolated

function should be monotone increasing (since λ(β) ≥ 0). Specifically, we use the Fritsch-Carlson

monotone cubic spline method [FC80]. We denote the monotone interpolation by Λ̂(β). More

sophisticated interpolation methods could be used, for example method taking the Monte Carlo

23

standard error into account.

While we only use Λ(β) in our adaptation procedure, it is still useful to estimate λ(β) for

visualization purpose. We do this by taking the derivative of our interpolation, λ̂(β) = Λ̂′(β),

which is just a piecewise quadratic function.

5.4 Adaptive algorithm

Updating. The ideas described in this section so far are summarized in Procedure 2, which given

rejection statistics collected for a schedule provide an updated schedule.

Procedure 2 UpdateSchedule(swap rejection estimates {r̂(i−1,i)}, previous schedule P)

1: N ← |P| − 1
2: For each βi ∈ P, compute Λ̂(βi) . Equation (59)
3: S ← {(β0, Λ̂(β0)), (β1, Λ̂(β1)), . . . , (βN , Λ̂(βN))}
4: Compute a monotone increasing interpolation Λ̂(·) of the points S . e.g. using [FC80]
5: Λ̂← Λ̂(1)
6: for k in 1, 2, ..., N − 1 do
7: Find β∗k such that Λ̂(β∗k) = Λ̂ k

N using e.g. bisection.

8: return P∗ = (0, β∗1 , β
∗
2 , . . . , β

∗
N−1, 1)

Adapting. Next, we push this idea a bit further in Procedure 3, which iteratively refines the

annealing schedule. By construction, the procedure guarantees that the second half of the samples

of the chain at β = 1 provide a consistent estimate of expectations under π (PT algorithms are

ergodic under much weaker conditions, such as ergodicity of the exploration kernels). We show in

Figure 3 a visualization of the execution of the adaptive algorithm, Procedure 3, on a real dataset.

Procedure 3 is qualitatively very different from existing adaptive PT algorithms such as [ARR11,

MMV13, LM16]. We do not suggest a continuous state-dependent adaptation, instead, we recom-

mend using only the second half of the samples produced by Procedure 3, which by construction

follow an homogeneous chain. This allows us to circumvent the hurdles that arise in practice when

doing continuous adaptation. Procedure 3 experimentally out-performs existing adaptive methods

in terms of round trip rates and effective sample size per second, as discussed in Section 7.3.

Procedure 3 Non-reversible PT with adaptation

1: N + 1← number of cores available
2: P ← initial annealing schedule of size N + 1 (e.g. uniform)
3: n← 2
4: for round in 1, 2, . . . , number of rounds requested do
5: {r̂(i−1,i)} ← DEO(n,P) . Procedure 1
6: P ←UpdateSchedule({r̂(i−1,i)},P) . Procedure 2
7: n← 2n . Rounds use an exponentially increasing number of scans

24

(a) (b) (c)

Figure 3: Visualization of our adaptive non-reversible PT algorithm ran on a hierarchical Bayesian model
applied to the historical failure rates of 5 667 launches for 367 types of rockets with. This was done with
N = 30 chains and 11 adaptive rounds, the last one consisting of 5 000 scans, the penultimate of 2 500,
etc. and estimated Λ̂ = 12.03. (a) Progression of the adaptive annealing schedule (colours index parallel
chains, y-axis, the values βk for each adaptation round, in log scale). (b) Progression of the average empirical
rejection rates {r̂(i−1,i)}Ni=1 with their sample standard deviation. Notice the average is fairly consistent,
but as the adaptive rounds increase, the rejection rates converge to the average as desired. (c) Progression

of the estimated λ̂(β) evolution with adaption rounds.

6 Scaling limit of annealing trajectories

Suppose Yn is the index process for annealing schedule PN of size N + 1 and meshsize ‖PN‖ taking

values in {0, . . . , N} × {−1, 1}. Figure 4 suggests that Yn behaves qualitatively different as N

increases for both reversible and non-reversible PT. The goal of this section is investigate these

differences and classify the scaling limits for the index process. We will show that such limits exist

under the stationary and ELE assumptions specified in Section 3.3. As ‖PN‖ → 0, we will show for

reversible PT, the index process weakly converges to a diffusion independent of π, π0 and sequence

of schedules PN . In contrast, the index process for non-reversible PT does not have a diffusive limit

(contrary to [LDMT09]) but rather scales to a Piecewise Deterministic Markov Process (PDMP)

controlled by λ, and the choice of the annealing schedule.

Schedule generating function. Suppose G ∈ C1([0, 1]) is an increasing function satisfying

G(0) = 0 and G(1) = 1. We say that G is a schedule generator for P = {β0, . . . , βN} if P =

G (Puniform), or equivalently

βi = G

(
i

N

)
. (61)

We will now assume without loss of generality that the sequence of schedules PN are generated

by some common G. In particular the mean value theorem implies ‖PN‖ = O(N−1) as N → ∞.

This is not as strict of a requirement as it seems since most annealing schedules commonly used

fall within this framework:

25

• The uniform schedule Puniform = {0, 1/N, . . . , 1} is generated by G(w) = w.

• The optimal schedule Poptimal = {β∗0 , . . . , β∗N} derived in Section 5.2 is generated by G(w) =

F−1
λ (w), where Fλ(β) = Λ(β)/Λ.

• If π0(x) ∝ π(x)γ for some γ ∈ (0, 1), and L(x) ∝ π(x)1−γ then some simple algebraic manip-

ulation shows that G(w) = γ1−w−γ
1−γ corresponds to the geometric schedule commonly used by

practitioners.

6.1 Scaled index process

To establish scaling limit for Yn = (In, εn) it will be convenient to work in a continuous time

setting. To do this, we suppose the times that PT iterations occur according to a Poisson process

{M(·)} with mean µN . The number of PT iterations that occur by time t ≥ 0, satisfies M(t) ∼
Poisson(µN t). We define the scaled index process by ZN (t) = (WN (t), εN (t)) where WN (t) =

IM(t)/N and εN (t) = εM(t). For convenience, we will denote βw = G(w) and use z = (w, ε) ∈
[0, 1]× {−1, 1} to be a scaled index.

The process ZN takes values on the discrete set Puniform × {−1, 1} and is only well-defined

when ZN (0) = z0 ∈ Puniform × {−1, 1}. To establish convergence it is useful to extend it to a

process ZN which can be initialized at any z0 ∈ [0, 1] × {−1, 1}. Suppose ZN (0) = z0 ∈ [0, 1] ×
{−1, 1}, and T1, T2, . . . are the iteration times generated by the Poisson process M . We construct

ZN (t) as follows: define ZN (t) = zn for t ∈ [Tn, Tn+1) and update zn+1|zn via a transition kernel

which depends on the communication scheme. We determine this transition kernel mirroring the

construction from Section 3.4.

Before we do this it will be useful to define the backward and forward shift operators ΦN
− ,Φ

N
+ :

[0, 1]→ [0, 1] by,

ΦN
− (w) =

w − 1
N w ∈

[
1
N , 1

]
,

1
N − w w ∈

[
0, 1

N

)
,

(62)

and similarly,

ΦN
+ (w) =

w + 1
N w ∈

[
0, 1− 1

N

]
,

1−
(

1
N − (1− w)

)
w ∈

(
1− 1

N , 1
]
.

(63)

Intuitively ΦN
ε (w) represents the location in [0, 1] after w moves a distance 1

N in the direction of ε

with a reflection at 0 and 1.

Scaled index process for reversible PT: Under the SEO communication scheme, if zn =

(wn, εn) ∈ Puniform × {−1, 1}, then we have wn+1 = ΦN
εn(wn) if a swap successfully occurred and

26

(a) N = 5 (b) N = 10

(c) N = 30 (d) N = 100

Figure 4: Panels (a)-(d) compare sample trajectories of the index process for a Gaussian model with Λ = 5
and Poptimal for both reversible and non-reversible PT. We compare the trajectories over a period of n = 100N
scans. When N = 5, 10, 30, 100 there are 1, 3, 2, 0 total number of round trips respectively made by the the
reversible trajectories. The non-reversible trajectories make in contrast 4, 6, 8, 9 round trips in the same
number of iterations. These simulations are in agreement with the theoretical result in Equation (50): the
estimate τ̄ = (2+2Λ)−1 derived from Section 5.3 suggests we should expect on average of 100τ̄ ≈ 8.33 round
trips when N is large for non-reversible PT.

27

wn+1 = wn otherwise. In both cases, εn+1 ∼ Unif{−1,+1}. Since ΦN
ε (w) is not only well-defined

for w ∈ Puniform but for w ∈ [0, 1], we naturally extend this construction to any w ∈ [0, 1].

Formally, we generate (wn+1, εn+1) in two steps. In the first step we simulate,

wn+1|wn, εn ∼

ΦN
εn(wn) with probability s(βwn , βΦNεn (wn)),

wn otherwise.
(64)

In the second step we simulate εn+1 ∼ Unif{−1,+1}. This defines a continuous time Markov pure

jump process WN ∈ D(R+, [0, 1])2 with jumps occurring according to an exponential of rate µN

and is well defined when initialized at any state w0 ∈ [0, 1].

Scaled index process for Non-reversible PT: Before defining the transition kernel for the

scaled index process under DEO communication, it will be convenient to define the propagation

function ΦN : [0, 1]× {−1, 1} → [0, 1]× {−1, 1} for z = (w, ε),

ΦN (z) =

(ΦN
ε (w), ε) if ΦN

ε (w) = w + ε
N ,

(ΦN
ε (w),−ε) otherwise,

(65)

and similarly the rejection function R : [0, 1]× {−1, 1} → [0, 1]× {−1, 1},

R(z) = (w,−ε). (66)

Under the DEO scheme, if zn = (wn, εn) ∈ Puniform×{−1, 1}, then we have zn+1 = ΦN (zn) when

a swap successfully occurs and zn+1 = R(zn) otherwise. Since ΦN (z) and R(z) are well-defined for

all of z ∈ [0, 1]× {−1, 1}, we naturally extend this construction to any z ∈ [0, 1]× {−1, 1}.
Formally, we generate zn+1 according to the transition kernel,

zn+1|zn ∼

ΦN (zn) with probability s(βwn , βΦNεn (wn)),

R(zn) otherwise.
(67)

This defines a continuous time Markov pure jump process ZN ∈ D(R+, [0, 1]×{−1, 1}) with jumps

occurring according to an exponential of rate µN which is well defined when initialized at any

z0 ∈ [0, 1]× {−1, 1}.

6.2 Scaling limit of scaled index process

We will now characterize the generators of WN and ZN and identify their scaling limits as N is

taken to infinity by establishing of their infinitesimal generators.

2Given a metric space (S, d), we define C(R+,S) and D(R+,S) to be set of functions f : R+ → S that are
continuous and càdlàg respectively.

28

Figure 5: Sample trajectory of W .

Scaling limit for Reversible PT: By Proposition 17.2 in [Kal97] the infinitesimal generator for

WN with SEO communication is

LWN f(w) =
µN
2

∑
ε∈{−,+}

(
f(ΦN

ε (w))− f(w)
)
s(βw, βΦNε (w)), (68)

where the domain D(LWN) is given by the set of functions such that LWN f is continuous. Since

ΦN
+ ,Φ

N
− are continuous, we have D(LWN) = C([0, 1]).

Define W ∈ C(R+, [0, 1]) to be the diffusion on [0, 1] with generator

LW f(w) =
1

2

d2f

dw2
, (69)

where the domain D(LW) consisting of f ∈ C2([0, 1]) such that f ′(0) = f ′(1) = 0. W is a Brownian

motion on [0, 1] with reflective boundary conditions admitting the uniform distribution Unif([0, 1])

as stationary distribution.

Theorem 6.1. Suppose µN = N2 and WN (0) converges weakly to W (0), then WN converges

weakly to W in D(R+, [0, 1]).

Theorem 6.1 tells us that for a index process for reversible PT scales to a Brownian motion on

[0, 1] with reflecting boundary conditions if we speed the scans by factor for O(N2). Note that this

limit W is independent of π0, π and partition generator G.

Scaling limit for non-reversible PT: Analogously to the reversible case, under DEO commu-

nication, the infinitesimal generator for ZN is

LZN f(z) = µN
(
f(ΦN (z))− f(z)

)
s(βw, βΦNε (w)) + µN (f(R(z))− f(z)) r(βw, βΦNε (w)), (70)

where z = (w, ε) and D(LZN) is given by the set of functions f such that LZN f is continuous.

Since ΦN has discontinuities at (1
N ,−1) and (1− 1

N , 1), we can verify that f ∈ D(LZN) if and only

if f(w0,−1) = f(w0, 1) for w0 ∈ 0, 1.

29

Define Z ∈ C(R+, [0, 1]× {−1, 1}) to be the PDMP on [0, 1]× {−1, 1} with generator

LZf(z) = ε
∂f

∂w
(z) + λ(βw)G′(w) (f(R(z))− f(z)) , (71)

where f ∈ D(LZ) is the set of functions f ∈ C1([0, 1] × {−1, 1}) such that f(w0,−1) = f(w0, 1)

and ∂f
∂w (w0,−1) = − ∂f

∂w (w0, 1) for w0 ∈ {0, 1}. Intuitively we have Z(t) = (W (t), ε(t)) is a PDMP

on [0, 1] × {−1, 1} where W (t) moves in [0, 1] with velocity ε(t). The sign of ε(t) is reversed at

rate λ(βW (t))G
′(W (t)) or when one hits a boundary; see [BBCD+18] for a discussion of PDMP on

restricted domains.

Note that when G = Goptimal = F−1
λ we have λ(βw)G′(w) = Λ for all w ∈ [0, 1]. So for the

optimal schedule, ε(t) changes direction at constant rate Λ. Figure 6 shows sample trajectories for

various values of Λ. When Λ is small, there are little to no changes in ε(t) in contrast to when Λ

is large.

(a) Λ = 0.1

(b) Λ = 1

(c) Λ = 10

Figure 6: (a)-(c) shows sample trajectories of W (t) where Z(t) = (W (t), ε(t)) under an optimal schedule
generated by Goptimal with Λ = 0.1, 1, 10 respectively.

Theorem 6.2. Suppose µN = N and ZN (0) converges weakly to Z(0), then ZN converges weakly

30

to Z in D(R+, [0, 1]×{−1, 1}). Moreover, the stationary distribution of Z is Unif([0, 1]×{−1, 1}).

Theorem 6.2 shows that the scaling limit corresponding to the non-reversible index process is

not a diffusion. Unlike reversible PT, the scaling limit depends on both the model through λ and

on the schedule through G.

7 Experiments

We organize this section into three subsections. In the first subsection, we check the predictions

made by our theory on simple models, selected so that analytical calculations are possible while

still capturing aspects of more interesting models (hence these are “models of models,” or meta-

models). In the second subsection, we look at the effect of violating the ELE assumption. Finally,

we compare the performance of our non-reversible scheme with other parallel tempering methods.

Reproducibility. To make our adaptive non-reversible method easy to use we implemented it

as an inference engine in the open source probabilistic programming language (PPL) Blang https:

//github.com/UBC-Stat-ML/blangSDK. A full description of the models used in the paper are

available at https://github.com/UBC-Stat-ML/blangDemos, see in particular https://github.

com/UBC-Stat-ML/blangDemos/blob/master/src/main/resources/demos/models.csv for a list

of command line options and data paths used for each model. All methods use the same exploration

kernels, namely slice sampling with exponential doubling followed by shrinking [Nea03]. Scripts

documenting replication of our experiments are available at https://github.com/UBC-Stat-ML/

ptbenchmark.

Multi-core implementation. We use lightweight threads [Fri15] to parallelize both the ex-

ploration and communication phases, as shown in Procedure 1. We use the algorithm of [LSS12] as

implemented in [SL13] to allow each PT chain to have its own random stream. This technique avoids

any blocking across threads and hence makes the inner loop of our algorithm truly embarrassingly

parallel in N . Moreover, the method of [LSS12] combined with the fact that we fix random seeds

means that the numerical value output by the algorithm is not affected by the number of threads

used. Increasing the number of threads simply makes the algorithm run faster. In all experiments

unless noted otherwise we use the maximum numbers of threads available in the host machine, by

default an Intel i5 2.7 GHz (which supports 8 threads via hyper-threading) except for Section 7.3

where we use an Amazon EC2 instance of type c4.8xlarge, which is backed by a 2.9 GHz Intel

Xeon E5-2666 v3 Processor (20 threads).

7.1 Tractable meta-models

Example 7.1 (Discrete multi-modal problem). Consider a discrete state space X = {0, . . . , 2k},
and let 1Even : Ω→ {0, 1} denote the indicator function for even numbers. Define π(x) ∝ a1Even(x)

for a > 1 and π0(x) ∝ 1 with V (x) = −1Even(x) log a. The distribution π has k + 1 modes located

31

https://github.com/UBC-Stat-ML/blangSDK
https://github.com/UBC-Stat-ML/blangSDK
https://github.com/UBC-Stat-ML/blangDemos
https://github.com/UBC-Stat-ML/blangDemos/blob/master/src/main/resources/demos/models.csv
https://github.com/UBC-Stat-ML/blangDemos/blob/master/src/main/resources/demos/models.csv
https://github.com/UBC-Stat-ML/ptbenchmark
https://github.com/UBC-Stat-ML/ptbenchmark

where x is even with low probability “barriers” located at x odd. The parameter a controls the

relative mass put on the modes. Therefore we have

π(β)(x) =
aβ1Even(x)

Z(β)
, (72)

where Z(β) = k+ (k+ 1)aβ. A simple computation using (38) shows that the local communication

barrier is,

λ(β) =
k(k + 1)aβ log a

(k + (k + 1)aβ)2
−−−→
k→∞

aβ log a

(1 + aβ)2
. (73)

By integrating we obtain the global communication barrier between π and π0,

Λ =
k(k + 1)(a− 1)

(2k + 1)(k + (k + 1)a)
−−−→
k→∞

a− 1

2(a+ 1)
. (74)

It can be seen that for all a > 1, λ(β) is decreasing in β as seen in Figure 7 and Λ is increasing in

a and k. Therefore, one should expect to see an increase in the intensity of rejection as the relative

modes of π become more “peaked” and when the number of modes increases.

(a) (b)

Figure 7: (a) The local communication barrier for k = 5 and various values of a. (b) The global communi-

cation barrier as a function of a for various k. In (a) the solid line is the approximation λ̂(β) (respectively Λ̂
in (b)), resulting from Procedure 3 (N = 20, n = 10 000 scans) and the dotted line is the analytic expression
in (73) (respectively, (74)).

Example 7.2 (Gaussian). Suppose π ∼ N(0, τ−1Id), and π0 ∼ N(0, τ−1
0 Id) with τ0 < τ . It can

be shown that π(β) ∼ N(0, τ−1
β Id) where τβ = (1 − β)τ0 + βτ . Theorem 1 in [PPC04] implies the

following closed form expression for λ in the Gaussian case:

λ(β) =
21−d(τ − τ0)

B
(
d
2 ,

d
2

)
τβ

, (75)

32

where B(a, b) is the Beta function. Moreover, for β < β′ the swap function satisfies

s(β, β′) = 2F d
2
, d
2

(
β

β + β′

)
, (76)

where Fa,b(x) is the CDF of a beta distribution with shape parameters a, b. By integrating λ we

get the global communication barrier is,

Λ(β) =
21−d

B
(
d
2 ,

d
2

) log

(
τβ
τ0

)
. (77)

As d→∞, we have

Λ ∼
√

d

2π
log

(
τ

τ0

)
, (78)

which is consistent with Proposition 4.5. We see from Figure 8 that the empirical approximation

of λ,Λ from Procedure 3 are consistent with (75),(77).

(a) (b)

Figure 8: Analysis of the Gaussian model where τ0 = 1 for various d, τ . (a) The local communication barrier
for d = 8 and various values of τ . (b) The global communication barrier as a function of d for various τ . In

(a) the solid line is the approximation λ̂(β) (respectively Λ̂ in (b)), resulting from Procedure 3 (N = 60 and
n = 10 000 scans) and the dotted line is the analytic expression in (75) (respectively, (77)).

To determine the optimal annealing schedule Poptimal = {β∗0 , . . . , β∗N}, we substituting (77) into

in Λ(β∗k) = Λ k
N and solve for β∗k as discuss in Section 5.2. This implies the optimal schedule satisfies,

τβ∗k = τβ∗k−1

(
τ

τ0

) 1
N

. (79)

33

(a) Λ = 2 (b) Λ = 5

Figure 9: (a) Figures (a) and (b) show the round trip rate of a Gaussian model with Λ = 2 and Λ = 5 as a
function of N . We compare the round trip rates with a uniform schedule (dashed) to the optimal schedule
(solid) for both DEO (blue) and REO (red). The dotted horizontal line represents τ̄ .

By substituting in τβ∗k = τ0 + β∗k(τ − τ0), we get β∗k = G(i
N) where,

G(w) =

(
τ0
τ

)1−w − τ0
τ

1− τ0
τ

. (80)

This is the same spacing obtained (based on a different theoretical approach) in [ARR11] and

[PPC04] for the Gaussian model (with a small notation change). As described in the next section,

in general it is not possible to get analytical expressions for optimal schedules, in which case we

resort to Procedure 3. Moreover, we remind the reader that non-reversible allow for annealing

schedules containing more chains compared to reversible methods.

Figure 9 compares the theoretical round trip rate for the Gaussian model using the uniform and

optimal schedule, this was computed by using Corollory 3.2 and substituting in the exact rejection

rates computed from (76). Notice that, for both reversible and non-reversible PT, the optimal

schedule produces significantly better round trip rates as expected. In particular when Λ = 5, it

takes nearly N = 105 number of parallel chains with the uniform schedule to achieve the same

round trip rate using an optimal schedule with N = 10. Although Corollary 4.8 implies that by

increasing N , the round trip rate converges to the optimal round trip rate, this example shows that

for even a large, but finite N , a poor schedule can result in very poor performance.

Example 7.3 (Ising model). We now compute numerically λ for the two dimensional Ising model

on a 2-dimensional lattice of size M ×M with magnetic moment µ. Using the notation xi ∼ xj

to indicate sites are nearest neighbours on the lattice, the target distribution is annealed by the

34

(a) (b)

Figure 10: (a) Monte Carlo estimate of the local communication barrier for the Ising model with µ = 0
and M = 5, 10, 20, 30 using 5000 scans and N = 100. The vertical line is at the critical βc where the phase
transition occurs. (b) The global communication barrier for Ising model as a function of M .

inverse temperature β and the tempered distributions are given by

π(β)(x) =
1

Z(β)
exp

β ∑
xi∼xj

xixj + µ
∑
i

xi

 . (81)

This is an M2 dimensional model which undergoes a phase transition as M →∞ at some critical

temperature βc. When µ = 0 it is known that βc = log(1 +
√

2)/2 [Bax07]. Figure 10 shows the

rejection intensity for the Ising model with µ = 0 for M = 5, 10, 20, 30.

We observe that λ exhibits very different characteristics in this scenario compared to the discrete

multimodal and Gaussian models: it is not monotonic and is maximum at the phase transition.

We also note that λ increases roughly linearly with respect to M . Given Proposition 4.5, this is to

be expected even if this proposition is not directly applicable here as the target distribution does

not factorize.

We also approximate the optimal annealing schedule for a M ×M Ising model in Figure 11.

Notice how the optimal annealing schedule are denser in regions where λ is high such as the phase

transition. When N is small, Poptimal results in a substantially better round trip rate than Puniform,

but when N is large, the round trip rate for both schedules asymptotically increase towards τ̄ . This

is consistent with Corollary 4.8.

7.2 Effects of ELE violation

As discussed in Section 3.3, we do not expect ELE to hold exactly: the likelihoods before and

after an exploration step are not independent in practice. Increasing the number nexpl of MCMC

35

(a) (b)

Figure 11: (a) We plot the distribution λ(β)/Λ and optimal annealing schedule for the Ising model with
M = 20, Λ = 13.33 N = 30 intervals. The vertical line indicates the phase transition. (b) The round trip
rates for the Ising model with µ = 0 and M = 20 with a uniform schedule (dashed) to the optimal schedule
(solid) for both DEO (blue) and REO (red). The dotted horizontal line represents the approximation of the
optimal round trip rate τ̂ .

exploration steps taken between two communication steps (see Procedure 1) can be used to approach

ELE. However a priori one may be concerned that nexpl would have to be very large to do so.

To investigate this question, we run the non-reversible method with different values for nexpl. Let

dvar denote the number of variables in the model. We run experiments with nexpl = 0, (1/2)dvar,

dvar, 2dvar, 4dvar, . . . , 32dvar. The fractions 0, 1/2, 1, 2, . . . involved in this construction can be

interpreted as the expected number of times an individual variable is updated in an exploration

phase, i.e. the expected updates per exploration phase. The only exception is for the prior chain

(β = 0), we always use nexpl = 1 since we can get exact samples from the prior distributions

considered in our experiments. The case nexpl = 0 technically still yields an ergodic chain since the

communication chain will ensure all chains visit the prior chain.

For each value of nexpl considered we ran 10 times the non-reversible PT scheme with different

random seeds (a total of 80 runs). Each run uses 10 000 scans, where one scan consists in nexpl

exploration iterations followed by one communication iteration. The 10 000 scans are organized into

12 adaptation rounds, where the last round contains 5 000 scans, the penultimate, 2 500, etc. The

first round uses a uniformly-spaced annealing schedule, and the subsequent rounds approximate the

optimal annealing schedule computed using the estimate of λ from the previous round. For each

round and configuration, we report three quantities: (a) the estimated upper bound τ̄ as introduced

in Section 4.2, (b) the actual restart rate, directly measured from the empirical replica trajectories,

and (c) the estimated function λ. The estimation method for τ̄ is described in Section 5.

We show in Figure 12 the three quantities (a,b,c) described above for the Ising model. The

results show that our key results are highly resilient to large violations of the ELE assumption.

36

(a) (b) (c)

Figure 12: Results on the super-critical Ising model (M = 5), varying the number of expected updates per
exploration phase (for β = 0, the prior chain always uses exactly one exact sample). We used N = 16
and estimated Λ̂ = 3.08. (a) The estimated upper bound τ̄ from Procedure 3. (b) The round trip rate
directly measured from the empirical replica trajectories. The dotted line represents the estimated of τ̄ . (c)
An estimate of the local communication barrier λ(β). Whenever nexpl > 0, the adaptive scheme accurately
learns τ̄ , λ.

First, for all nexpl > 0 considered, the estimated local communication barrier λ and therefore the

global one Λ are in very close agreement and are estimated with roughly the same number of

adaptation rounds. Second, for all nexpl > 0, the actual restart rate is indeed bounded by the

estimated value τ̄ . The only exception is the setting nexpl = 0, where the estimated λ is markedly

off compared to the other ones.

We provided in Section 3.3 one motivating example for ELE based on symmetric multi-modal

problems. To investigate if breaking these symmetries will induce more severe consequences for

violating ELE, we next look at the Ising model under the effect of a magnetic field. We set the

magnetic moment µ = 0.1, leading to a target distribution where all marginals assign a mass of

less than 0.07 to xi = 1. We show the results in Figure 13. Even in this asymmetric multi-modal

problem, we observe the same resilience to violations of ELE. We obtain in Figure 14 similar results

for a Bayesian hierarchical model applied to a real dataset.

We conjecture that this resilience may come from the structure of typical neighbourhoods of non-

reversible parallel tempering. Our intuition can be described using a point process defined as follows.

The point process places the rejected swaps in a two-dimensional space, where one axis indexes PT

communication iterations, and the other axis consists in the parallel chains. In the regime of a large

number of parallel chains, for a given location in this point process, a neighbourhood will contain

either zero or one rejection event. The key observation is that in both cases, no two chains interact

more than once. This is true by inspection of Figure 15. As a consequence, even when a small

number of exploration steps are used between swaps, with high probability they will accumulate

by the time a pair of chains meet again.

Note that the same is not true for reversible PT, where the typical local neighbourhood can

contain an arbitrary large number of events, and hence pairs of chain can interact more than once

in the neighbourhood. As a consequence, we conjecture that for our non-reversible results, it may

37

(a) (b) (c)

Figure 13: Same quantities as in Figure 12, but where the Ising model (M = 5, µ = 0.1) with as estimated
Λ̂ = 2.35) is made asymmetric by adding magnetic field potentials. Note in in (a) predictions of the optimal
round trip rate made were cut when nexpl = 0 not shown past round 4, because they were significantly larger
than the scale of our plot.

(a) (b) (c)

Figure 14: Same quantities as in Figure 12, but with a hierarchical Bayesian model (Λ̂ = 12.03) applied to
the historical failure rates of 5 667 launches for 367 types of rockets.

be possible to significantly weaken the ELE assumption, but not for reversible PT. We leave the

theoretical investigation of this question for future work.

To provide some empirical justification to this conjecture, we performed another experiment on

the magnetic Ising model, fixing the expected updates per exploration phase to 1/2 and increasing

the number of chains instead. The results are shown in Figure 16 and support that by increasing

the number of parallel chains, the actual tempered restart rate still converges to the theoretical

bound from below even in the face of severe ELE violation.

7.3 Comparison with other parallel tempering schemes

In this section, we present results to support that the increased round trip rates enjoyed by our

method does indeed translate into increased effective sample size per compute time. The following

experiment also benchmarks the empirical running time of our adaptive procedure compared to

previous adaptive PT methods [ARR11,MMV13].

38

(a) (b)

Figure 15: Typical neighbourhoods of non-reversible parallel tempering in the regime of a large number of
parallel chains. There are either no rejection events (a), or one rejection event (b). In both cases, no two
chains interact more than once.

Benchmarked methods. The methods we considered are: (1) the stochastic optimization adap-

tive method for reversible schemes proposed in [ARR11]; (2), a second stochastic optimization

scheme, which still selects the optimal number of chains using the 23% rule but uses an improved

update scheme from [MMV13]; (3) our adaptive non reversible PT scheme; (4) our scheme, com-

bined with a better initialization based on a preliminary execution of a sequential Monte Carlo

algorithm [DMDJ06], we use this to investigate the effect on the violation of the stationarity as-

sumption, and for fairness, we use this sophisticated initialization method for all the methods

except (3); and finally, (5), as a baseline, a single-chain MCMC run. All baseline methods are im-

plemented in Blang (https://github.com/UBC-Stat-ML/blangSDK), the same probabilistic pro-

gramming language as used to implement our method. The code for the baseline adaption methods

are available at https://github.com/UBC-Stat-ML/blangDemos. All methods therefore run on

the Java Virtual Machine, so their wall clock running times are all comparable.

Stochastic optimization methods. Both [ARR11] and [MMV13] are based on reversible PT

together with two different flavours of stochastic optimization to adaptively select the annealing

schedule. In [ARR11], the chains are added one by one, each chain targeting a swap acceptance rate

of 23% from the previous one. In [MMV13], the authors modify the scheme in two ways: first, they

optimize all annealing parameters simultaneously, and second, they propose a different update for

performing the stochastic optimization. To optimize all chains simultaneously, the authors assume

that both the number of chains and the equi-acceptance probability are specified. Since this infor-

mation is not provided to the other methods, in order to perform a fair comparison, for the method

we label as “Miasojedow, Moulines, Vihola” we implemented a method which adds the chain one

at the time while targeting the swap acceptance rate of 23% but based on the improved stochastic

optimization update of [MMV13]. Specifically, both [ARR11] and [MMV13] rely on updates of the

form ρn+1 = ρn+γn(αn+1−0.23) where γn is an update schedule and ρn is a re-parameterization of

difference in annealing parameter from the previous chain β to the one being added β′. The work

39

https://github.com/UBC-Stat-ML/blangSDK
https://github.com/UBC-Stat-ML/blangDemos

(a) (b)

Figure 16: Effect of increasing the number of parallel chains for an example where ELE is severely violated
(only half the variables are updated at each exploration step). (a) Estimated upper bound τ̄ .(b) Actual restart
rate, directly measured from the empirical replica trajectories. Notice that the number of scans required for
the round trip rates to in stabilize increases with N as predicted by Proposition 3.1 but eventually attains
a higher round round trip.

of [ARR11] uses the update β′n = β(1 + exp(ρn))−1, whereas the work of [MMV13] specifies the

explicit parameterization used for ρ, namely ρ = log(β′−1 − β−1), from which the update becomes

β′n = β(1 + β exp(ρn))−1. Moreover, while [ARR11] use γn = (n + 1)−1, [MMV13] suggest to use

γn = (n + 1)−0.6. We found that the latter set of choice was more stable. For example, in the

next numerical example, the former failed to converge in 100 000 iterations while we encountered

no convergence problems with the other methods.

Experimental setup. We ran all methods on a Bayesian mixture model. These experiments

are performed on an EC2 instance of type c4.8xlarge, which uses a 2.9 GHz Intel Xeon E5-2666

v3 Processor. Since this type of CPU supports 20 threads, we set the number of chains to 16, keep-

ing a slight buffer for garbage collection and background system tasks. With that number of chains,

we obtain an average swap rejection rate of 46%, well above the reversible recommendations in the

23−40% range. All methods used 10 000 scans, where a scan uses nexpl = 3dvar exploration rounds.

For this example, the number of latent variables to sample is equal to dvar = 916. Methods akin

to [Gew04] were used to ensure correctness of the MCMC code. We computed the effective sample

size using a batch estimator, see, e.g., [Fle08], which partitions the n samples into
√
n subsets

B1, B2, . . . , B√n, each of size |Bk| =
√
n± 1. To avoid the ESS estimator collapsing in cases where

the estimates are too off, for example when a mode is not explored properly, we first ran a longer PT

run 50 000 scans, and centre all variance computations on the estimates from that pilot run. If f(x)

is the test function of interest, and we have access to the true value or to a very accurate estimate

of the mean µ =
∫
f(x)π(dx) and variance σ2 =

∫
(f(x)− µ)2π(dx), the centred ESS estimator is

given by n/
∑

k[|Bk|−1
∑

x∈Bk(f(x)−µ)/σ]2. The only result qualitatively affected by this method

versus standard ESS computation is the performance of the single-chain MCMC, in which standard

40

ESS calculations severely overestimate the quality of the samples. We ensured the ESS compu-

tation code is correct by checking we recover analytic auto-correlations values for an AR(1) process.

Results. In Figure 17, each dot summarized in the box plots represents the ESS per wall clock

time in seconds for the marginal of one of the model variables. We present two versions of the plot:

one where time is computed including adaptation time, and one where adaptation time is excluded.

The results show that adaptation is more efficient with our proposed non-reversible scheme, as

evidenced by results where the timing includes adaptation time, and also results in a more effi-

cient sampling algorithm as measured in timing measured by sampling time. The results also show

that SMC-based initialization does help PT performance, presumably by relaxing violation of the

stationarity assumption. The difference in ESS per second between single chain MCMC and the

PT methods underscore the actual difference in the quality of the sample: we show in Figure 18

the posterior distribution for the two mixture proportions (π1, π2) as inferred by our non-reversible

scheme versus single chain MCMC. From symmetries induced by label switching, we know that

the two posterior distributions should be symmetric around 0.5. The plot shows that the single

chain MCMC is qualitatively incorrect and only explored one of the two symmetric regions of the

posterior distribution whereas PT fully explores the state space. In terms of actual round trip

rates, the reversible stochastic optimization-based method achieved a rate of τ = 0.28% whereas

our method achieved a rate of τ = 0.72%.

8 Discussion

PT methods are generally quite powerful when they are well tuned but they are also sensitive to

design choices such as the communication scheme, the annealing schedule and the number of parallel

chains to run. In particular, if PT is used in its reversible version, it is not an embarrassingly parallel

algorithm in N , in the sense that adding more parallel chains eventually decreases performance.

We have shown that the situation is qualitatively different in the non-reversible case, and

established for the first time that a non-reversible PT algorithm known in the physics literature

as DEO can benefit from adding an arbitrary number of chains when implemented in a massively

parallel computing setup. More precisely, we showed that with DEO communication, the round

trip rate does not deteriorate as the number of additional cores N increases, but actually increases

to an optimal round trip rate τ̄ . This is in contrast to reversible PT where the round trip rate is

O(N−1) independent of π, π0. We also showed that for any number of chains N , non-reversible PT

dominates reversible PT. This suggests that practitioners should always use non-reversible scheme

with N as large as possible.

We identified the local communication barrier λ(β) as a key object to understanding the be-

haviour of non-reversible PT algorithms. From this rate function λ we identified an asymptotic

invariant for PT called the global communication barrier Λ, which measures the deviance of π and

π0. We heuristically argued that, as the dimension of the state space d increases, we expect the

41

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.1

1.0

10.0

Miasojedow−Moulines−Vihola Non−reversible PT Non−reversible PT + SCM init Single−chain MCMC

Inference Method

E
S

S
/s

 b
as

ed
 o

n
to

ta
l w

al
l c

lo
ck

 ti
m

e

Total wall clock time computed as the wall clock time for sampling + adaptation (if applicable)

Effective Sample Size per total time (ESS/s) across all model marginal distributions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.3

1.0

3.0

10.0

Miasojedow−Moulines−Vihola Non−reversible PT Non−reversible PT + SCM init Single−chain MCMC

Inference Method

E
S

S
/s

 b
as

ed
 o

n
w

al
l c

lo
ck

 ti
m

e
ex

cl
ud

in
g

ad
ap

ta
tio

n
tim

e

Total wall clock time computed as the wall clock time for sampling (excluding adaptation)

Effective Sample Size per sampling time (ESS/s) across all model marginal distributions

Figure 17: Benchmarking results on a Bayesian mixture model. The y-axis shows measure of efficiency in
log-scale, and the x-axis, four different methods compared. The top plot shows the effective sample size per
second where time is computed including the adaptation iterations needed for the first four methods. The
bottom plot excludes the adaptation time from timing computation.

42

0
1

0.3 0.4 0.5 0.6 0.7

0

2

4

6

0

2

4

6

pi

de
ns

ity

Density plot for: pi

0
1

0.2 0.4 0.6 0.8

0

1

2

3

0

1

2

3

pi

de
ns

ity

Density plot for: pi

Figure 18: Estimated posterior distributions for the mixture proportion parameters π1 and π2 (rows). Left
column is from a single-chain MCMC algorithm, right column, from our adaptive non-reversible PT algo-
rithm.

global barrier to grow as Λ = O(
√
d) under regularity conditions. Moreover we established a con-

nection between the round trip rate and Λ, showing that τ̄ = (2 + 2Λ)−1 upper bounds the round

trip rate. This means that the global communication barrier Λ can be interpreted as a “sufficient

statistic” for π, π0 from the point of view of a non-reversible PT algorithm, since for N large the

round trip rate only depends on π, π0 through Λ.

Another consequence of our theory is that
∑N

i=1 r
(i−1,i) ≈ Λ independently of the annealing

schedule. This implies that using the rejection probabilities, we can develop an estimator of Λ and

τ̄ = (2 + 2λ)−1. These quantities are easy to approximate, so practitioners can use them to make

informed decisions about how to allocate their computational resources. Importantly, note that

in all our experiments, the estimate of the bound τ̄ converges very fast, so this allows the user to

distinguish between a low round trip rate due to poor design choices versus a low rate arising from

a fundamentally hard problem having high value for the global barrier Λ. This is to our knowledge

the first result of this kind in the PT literature.

Using the asymptotic analysis of PT, we were able to develop a novel approach to identify the

optimal annealing schedule when N is large but finite. In our experiments, our adaptive algorithm

converges rapidly, is easy to implement with minimal modification to existing PT implementations,

and outperforms other state-of-the-art PT adaptive schemes both in terms of round trip rate and

ESS per second (see Section 7).

Finally we study the dynamics driving the qualitative differences between reversible and non-

reversible PT through the scaling limits of the index process. We show that for reversible PT, as

N increases, the index process for reversible PT weakly converges to a reflected Brownian motion

independent of the annealing schedule, π and π0. For non-reversible PT we show that the index

process scales to a PDMP which travels in straight line trajectories and reverses direction at an

inhomogeneous rate controlled by λ and the annealing schedule. When we have chosen the optimal

43

schedule, the rate becomes a constant equal to Λ. Unlike previous literature on PT, our analysis

avoids making strong structural assumptions on either π or the state space.

Our analysis makes use of an assumption we call ELE. Empirically we have shown in Section 7.2

that our results appear robust to violation of ELE. We conjecture that this assumption can be lifted

in the non-reversible setup. We view a detailed ELE-free theoretical analysis of the weak limit in

N of non-reversible PT as an interesting open problem.

44

9 References

[ADHR04] Gautam Altekar, Sandhya Dwarkadas, John P. Huelsenbeck, and Fredrik Ronquist.

Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic in-

ference. Bioinformatics, 20(3):407–415, February 2004.

[AFGL05] Michael Andrec, Anthony K Felts, Emilio Gallicchio, and Ronald M Levy. Protein

folding pathways from replica exchange simulations and a kinetic network model. Pro-

ceedings of the National Academy of Sciences, 102(19):6801–6806, 2005.

[ARR11] Yves F. Atchadé, Gareth O. Roberts, and Jeffrey S. Rosenthal. Towards optimal

scaling of Metropolis-coupled Markov chain Monte Carlo. Statistics and Computing,

21(4):555–568, October 2011.

[Bax07] Rodney J. Baxter. Exactly Solved Models in Statistical Mechanics. Dover books on

physics. Dover Publications, 2007.

[BBCD+18] Joris Bierkens, Alexandre Bouchard-Côté, Arnaud Doucet, Andrew B Duncan, Paul

Fearnhead, Thibaut Lienart, Gareth Roberts, and Sebastian J Vollmer. Piecewise de-

terministic Markov processes for scalable Monte Carlo on restricted domains. Statistics

& Probability Letters, 136:148–154, 2018.

[BHH+17] Benjamin Ballnus, Sabine Hug, Kathrin Hatz, Linus Görlitz, Jan Hasenauer, and

Fabian J Theis. Comprehensive benchmarking of Markov chain Monte Carlo methods

for dynamical systems. BMC Systems Biology, 11(1):63, 2017.

[Bil13] Patrick Billingsley. Convergence of Probability Measures. John Wiley & Sons, 2013.

[BSW13] Björn Böttcher, René Schilling, and Jian Wang. Lévy matters. iii, volume 2099 of

Lecture Notes in Mathematics, 2013.

[CL08] Sooyoung Cheon and Faming Liang. Phylogenetic tree construction using sequential

stochastic approximation Monte Carlo. BioSystems, 91(1):94–107, 2008.

[CLP99] Fang Chen, László Lovász, and Igor Pak. Lifting Markov chains to speed up mixing.

In Proceedings of the 31st annual ACM symposium on Theory of computing, pages

275–281. ACM, 1999.

[CRI10] KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Parallel tempering is efficient

for learning restricted Boltzmann machines. In Neural Networks (IJCNN), The 2010

International Joint Conference on, pages 1–8. IEEE, 2010.

[CS11] John D. Chodera and Michael R. Shirts. Replica exchange and expanded ensem-

ble simulations as Gibbs sampling: Simple improvements for enhanced mixing. The

Journal of Chemical Physics, 135(19):194110, November 2011.

45

[Dav93] Mark HA Davis. Markov Models & Optimization. Chapman and Hall, 1993.

[DHN00] Persi Diaconis, Susan Holmes, and Radford M Neal. Analysis of a nonreversible Markov

chain sampler. Annals of Applied Probability, 10(3):726–752, 2000.

[DLCB14] Guillaume Desjardins, Heng Luo, Aaron Courville, and Yoshua Bengio. Deep temper-

ing. arXiv preprint arXiv:1410.0123, 2014.

[DLPD12] Paul Dupuis, Yufei Liu, Nuria Plattner, and Jimmie D Doll. On the infinite swapping

limit for parallel tempering. SIAM Multiscale Modeling & Simulation, 10(3):986–1022,

2012.

[DMDJ06] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers.

Journal of the Royal Statistical Society. Series B (Statistical Methodology), 68(3):411–

436, 2006.

[DP15] Cameron Davidson-Pilon. Bayesian Methods for Hackers: Probabilistic Programming

and Bayesian Inference. Addison-Wesley Professional, New York, 1 edition edition,

2015.

[ED05] David J Earl and Michael W Deem. Parallel tempering: Theory, applications, and

new perspectives. Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.

[EK09] Stewart N Ethier and Thomas G Kurtz. Markov Processes: Characterization and

Convergence, volume 282. John Wiley & Sons, 2009.

[FC80] F. Fritsch and R. Carlson. Monotone piecewise cubic interpolation. SIAM Journal on

Numerical Analysis, 17(2):238–246, April 1980.

[FFT+14] Ye Fang, Sheng Feng, Ka-Ming Tam, Zhifeng Yun, Juana Moreno, J. Ramanujam, and

Mark Jarrell. Parallel tempering simulation of the three-dimensional EdwardsAnder-

son model with compact asynchronous multispin coding on GPU. Computer Physics

Communications, 185(10):2467–2478, October 2014.

[Fle08] Flegal, James M. Monte Carlo Standard Errors for MCMC, 2008.

[Fri15] Jeff Friesen. Java Threads and the Concurrency Utilities. Apress, Berkely, CA, USA,

1st edition, 2015.

[Gew04] John Geweke. Getting it right. Journal of the American Statistical Association,

99(467):799–804, September 2004.

[Gey91] Charles J Geyer. Markov chain Monte Carlo maximum likelihood. Interface Proceed-

ings, 1991.

[Har85] J. Michael Harrison. Brownian Motion and Stochastic Flow Systems. John Wiley and

Sons, 1985.

46

[HN96] Koji Hukushima and Koji Nemoto. Exchange Monte Carlo method and application

to spin glass simulations. Journal of the Physical Society of Japan, 65(6):1604–1608,

1996.

[Kal97] Olav Kallenberg. Foundations of Modern Probability. Springer-Verlag, 1997.

[Kal02] Olav Kallenberg. Foundations of Modern Probability. Springer, 2nd edition, 2002.

[KK05] Aminata Kone and David A. Kofke. Selection of temperature intervals for parallel-

tempering simulations. The Journal of Chemical Physics, 122(20):206101, May 2005.

[Kof02] David A Kofke. On the acceptance probability of replica-exchange Monte Carlo trials.

The Journal of Chemical Physics, 117(15):6911–6914, 2002.

[KTHT06] Helmut G Katzgraber, Simon Trebst, David A Huse, and Matthias Troyer. Feedback-

optimized parallel tempering monte carlo. Journal of Statistical Mechanics: Theory

and Experiment, 2006(03):P03018, 2006.

[LDMT09] Martin Lingenheil, Robert Denschlag, Gerald Mathias, and Paul Tavan. Efficiency

of exchange schemes in replica exchange. Chemical Physics Letters, 478(1-3):80–84,

2009.

[LM16] Mateusz Krzysztof Lacki and B lażej Miasojedow. State-dependent swap strategies

and automatic reduction of number of temperatures in adaptive parallel tempering

algorithm. Statistics and Computing, 26(5):951–964, 2016.

[LSR10] Tony Lelièvre, Gabriel Stoltz, and Mathias Rousset. Free Energy Computations: A

Mathematical Perspective. World Scientific, 2010.

[LSS12] Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. Deterministic parallel random-

number generation for dynamic-multithreading platforms. MIT web domain, February

2012.

[MB12] Grigorios Mingas and Christos-Savvas Bouganis. Parallel Tempering MCMC Acceler-

ation Using Reconfigurable Hardware. In Oliver C. S. Choy, Ray C. C. Cheung, Peter

Athanas, and Kentaro Sano, editors, Reconfigurable Computing: Architectures, Tools

and Applications, Lecture Notes in Computer Science, pages 227–238. Springer Berlin

Heidelberg, 2012.

[MMV13] B lażej Miasojedow, Eric Moulines, and Matti Vihola. An adaptive parallel tempering

algorithm. Journal of Computational and Graphical Statistics, 22(3):649–664, 2013.

[Nea03] Radford M. Neal. Slice sampling. The Annals of Statistics, 31(3):705–767, June 2003.

[NH07] Walter Nadler and Ulrich H. E. Hansmann. Generalized ensemble and tempering

simulations: A unified view. Physical Review E, 75(2), February 2007.

47

[OKOM01] Tsuneyasu Okabe, Masaaki Kawata, Yuko Okamoto, and Masuhiro Mikami. Replica-

exchange Monte Carlo method for the isobaric–isothermal ensemble. Chemical Physics

Letters, 335(5-6):435–439, 2001.

[PPC04] Cristian Predescu, Mihaela Predescu, and Cristian V Ciobanu. The incomplete beta

function law for parallel tempering sampling of classical canonical systems. The Jour-

nal of Chemical Physics, 120(9):4119–4128, 2004.

[PS03] Jed W Pitera and William Swope. Understanding folding and design: Replica-

exchange simulations of“trp-cage”miniproteins. Proceedings of the National Academy

of Sciences, 100(13):7587–7592, 2003.

[RR14] Gareth O Roberts and Jeffrey S Rosenthal. Minimising MCMC variance via diffusion

limits, with an application to simulated tempering. The Annals of Applied Probability,

24(1):131–149, 2014.

[SBN13] Yannick G. Spill, Guillaume Bouvier, and Michael Nilges. A convective replica-

exchange method for sampling new energy basins. Journal of Computational Chem-

istry, 34(2):132–140, January 2013.

[SH16] Yuji Sakai and Koji Hukushima. Irreversible simulated tempering. Journal of the

Physical Society of Japan, 85(10):104002, October 2016.

[SL13] Guy Steele and Doug Lea. Splittable Random application programming interface.

https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.

html, 2013. [Online; accessed 6-May-2019].

[SW86] Robert H Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-

glasses. Physical Review Letters, 57(21):2607, 1986.

[TCV11] Konstantin S Turitsyn, Michael Chertkov, and Marija Vucelja. Irreversible Monte

Carlo algorithms for efficient sampling. Physica D: Nonlinear Phenomena, 240(4-

5):410–414, 2011.

[Vuc16] Marija Vucelja. Lifting: a nonreversible Markov chain Monte Carlo algorithm. Amer-

ican Journal of Physics, 84(12):958–968, 2016.

[Wu17] Fan Wu. Irreversible Parallel Tempering and an Application to a Bayesian Nonpara-

metric Latent Feature Model. Master’s thesis, Oxford University, 2017.

[ZC14] Weihong Zhang and Jianhan Chen. Replica exchange with guided annealing for ac-

celerated sampling of disordered protein conformations. Journal of Computational

Chemistry, 35(23):1682–1689, 2014.

48

https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html

Appendix A Invariant distribution of KPT
n

Since KPT
n = Kcomm

n Kexpl, to show KPT
n is π̄-invariant, it is enough to verify that both Kexpl and

Kcomm
n are π̄-invariant. It is clear by construction that Kexpl defined by (4) is π̄-stationary, so

it remains to verify that this Kcomm
n . Clearly KSEO,KDEO

n are trivially π̄-invariant if each swap

kernel K(i,j) is. We verify this directly. Let x̄ = (x, σ) ∈ XN+1 × Perm([N]), then

∫
XN+1×Perm([N])

π̄(dx̄)K(i,j)(x̄, A× {σ′})

=
1

(N + 1)!

∑
σ

∫
XN+1

π(dx)K(i,j)(x̄, A× {σ′}) (82)

=
1

(N + 1)!

∑
σ

∫
XN+1

π(dx)
(

1− α(i,j)(x)
)
δx(A)I[σ′ = σ]

+
1

(N + 1)!

∑
σ

∫
XN+1

π(dx)α(i,j)(x)δx(i,j)(A)I[σ′ = (i, j) ◦ σ] (83)

=
1

(N + 1)!

∫
XN+1

π(dx)
∑
σ

(
1− α(i,j)(x)

)
δx(A)I[σ′ = σ]

+
1

(N + 1)!

∫
XN+1

π(dx)
∑
σ

α(i,j)(x)δx(i,j)(A)I[σ′ = (i, j) ◦ σ] (84)

=
1

(N + 1)!

∫
XN+1

π(dx)
{(

1− α(i,j)(x)
)
δx(A) + α(i,j)(x)δx(i,j)(A)

}
(85)

=
1

(N + 1)!

∫
XN+1

π(dx)K(i,j)(x, A) (86)

=
1

(N + 1)!
π(A) (87)

= π̄(A× {σ′}). (88)

Therefore, KPT
n is π̄-invariant.

Appendix B Proof of Proposition 3.1

Proof of Proposition 3.1. To simplify notation for the rest of the proof, we define T↑ and T↓ as the

hitting times to the posterior and prior defined by,

T↑ = min{n : (In, εn) = (N, 1)}, T↓ = min{n : (In, εn) = (0,−1)}. (89)

We will also denote

si = s(i−1,i) (90)

ri = r(i−1,i). (91)

49

(a) If we define ai• = ESEO(T•|I0 = i) for i = 0, . . . , N , then we have

ESEO(T) = a0
↑ + aN↓ . (92)

By the Markov property, for i = 1, . . . , N − 1 we have ai• satisfies the recursion,

ai• =
1

2
si+1(ai+1

• + 1) +
1

2
si(a

i−1
• + 1) +

1

2
(ri+1 + ri)(a

i
• + 1) (93)

For i = 1, . . . , N we substitute in bi• = ai• − ai−1
• into (93). After simplification, we get that

bi• satisfies the following recursive relation,

−2 = si+1b
i+1
• − sibi•. (94)

The solutions to (94) are,

sib
i
• = s1b

1
• − 2(i− 1), (95)

or equivalently,

sib
i
• = sNb

N
• + 2(N − i) (96)

We now deal with the case of ↑ and ↓ separately.

• To determine a0
↑ we note that a if I0 = 0 then I1 = 1 with probability 1

2s1 and I1 = 0

otherwise. So a0
↑ satisfies,

a0
↑ =

1

2
s1(a1

↑ + 1) +

(
1− 1

2
s1

)
(a0
↑ + 1), (97)

or equivalently,

s1b
1
↑ = −2. (98)

Substituting this into (95) implies sib
i
↑ = −2i. By summing bi↑ = ai↑ − a

i−1
↑ from i =

1, . . . , N and noting aN↑ = 0 we get,

a0
↑ =

N∑
i=1

2i

si
. (99)

• Similarly to determine aN↓ we note that a if I0 = N then I1 = N − 1 with probability

50

1
2sN and I1 = N otherwise. So aN↓ satisfies,

aN↓ =
1

2
sN (aN−1

↓ + 1) +

(
1− 1

2
sN

)
(aN↓ + 1), (100)

or equivalently,

sNb
N
↓ = 2 (101)

Substituting this into (96) implies sib
i
↓ = 2 + 2(N − i). By summing bi↓ = ai↓− a

i−1
↓ from

i = 1, . . . , N and noting a0
↓ = 0 we get,

aN↓ =
N∑
i=1

2(N − i) + 2

si
. (102)

Substituting in (99) and (102) into (92) we get,

ESEO(T) =
N∑
i=1

2i

si
+

N∑
i=1

2(N − i) + 2

si
(103)

= 2(N + 1)
N∑
i=1

1

si
(104)

= 2N(N + 1) + 2(N + 1)

N∑
i=1

ri
si
. (105)

(b) If we define, ai,ε• = EDEO(T•|I0 = i, ε0 = ε) for i = 0, . . . , N and ε = +,−, then we have,

EDEO(T) = a0,−
↑ + aN,+↓ . (106)

Note that for i = 1, . . . , N − 1 we have ai,ε• satisfies the recursion relations,

ai,+• = si+1(ai+1,+
• + 1) + ri+1(ai,−• + 1) (107)

ai,−• = si(a
i−1,−
• + 1) + ri(a

i,−
• + 1) (108)

If we substitute ci• = ai,+• + ai−1,−
• , and di• = ai,+• − ai−1,−

• into (107) and (108) and simplify,

we get,

ai+1,+
• − ai,+• = ri+1d

i+1
• − 1 (109)

ai,−• − ai−1,−
• = rid

i
• + 1 (110)

51

By subtracting and adding (109) and (110) we get the joint recursion relation for ci• and di•,

ci+1
• − ci• = ri+1d

i+1
• + rid

i
• (111)

di+1
• − di• = ri+1d

i+1
• + rid

i
• − 2 (112)

Note that (112) can be rewritten as

si+1d
i+1
• − sidi• = −2. (113)

If can solve ci• and di•, we can recover ai,ε• by using,

ai,+• =
ci• + di•

2
(114)

ai−1,−
• =

ci• − di•
2

(115)

We now deal with the ↑ and ↓ cases separately.

• Note that a0,−
↑ = a0,+

↑ + 1. We can substitute this into (109) to get s1d
1
↑ = −2, which

combined with (113) implies,

sid
i
↑ = −2i. (116)

Since aN,+↑ = 0 we have cN↑ = −dN↑ , so by summing (111) we get,

2a0,−
↑ = c1

↑ − d1
↑ (117)

= cN↑ − d1
↑ −

N−1∑
i=1

(ci+1
↑ − ci↑) (118)

= −dN↑ − d1
↑ −

N−1∑
i=1

(ri+1d
i+1
↑ + rid

i
↑) (119)

= −sNdN↑ − s1d
1
↑ − 2

N∑
i=1

rid
i
↑. (120)

After substituting in (116) into (120) and dividing by 2 we get,

a0,−
↑ = N + 1 +

N∑
i=1

2iri
si
. (121)

• Note that aN,+↓ = aN,−↑ + 1. We can substitute this into (110) to get sNd
N
↓ = 2, which

combined with (113) implies,

sid
i
↓ = 2(N − i+ 1). (122)

52

Since a0,−
↓ = 0 we have c1

↓ = d1
↓, so by summing (111) we get,

2aN,+↓ = cN↓ + dN↓ (123)

= c1
↓ + dN↓ +

N−1∑
i=1

(ci+1
↓ − ci↓) (124)

= d1
↓ + dN↓ +

N−1∑
i=1

(ri+1d
i+1
↓ + rid

i
↓) (125)

= s1d
1
↓ + sNd

N
↓ + 2

N∑
i=1

rid
i
↓. (126)

After substituting in (122) into (126) and dividing by 2 we get,

aN,+↓ = N + 1 +

N∑
i=1

2(N − i+ 1)ri
si

. (127)

Finally, by substituting in (121) and (127) into (106), we get

EDEO(T) = 2(N + 1) + 2(N + 1)
N∑
i=1

ri
si
. (128)

Appendix C Proof of Proposition 4.2

Suppose V k is integrable with respect to π0 and π, we want to show here that λ : [0, 1]→ R+ given

by

λ(β) =
1

2

∫
X 2

|V (x)− V (y)|π(β)(x)π(β)(y)dxdy (129)

is in Ck−1([0, 1]). If we define L(x, y) = L(x)L(y) and π0(x, y) = π0(x)π0(y), we can rewrite (129)

as,

λ(β) =
1

2Z(β)2

∫
X 2

|V (x)− V (y)|L(x, y)βπ0(x, y)dxdy (130)

=
g(β)

2Z(β)2
(131)

53

where Z, g : [0, 1]→ R+ are defined by

Z(β) =

∫
X
L(x)βπ0(x)dx, (132)

g(β) =

∫
X 2

|V (x)− V (y)|L(x, y)βπ0(x, y)dxdy. (133)

Since Z(β) > 0 on [0, 1], if we can show that Z, g ∈ Ck−1([0, 1]) then it implies that λ ∈ Ck−1([0, 1]).

Lemma C.1. If V k is integrable with respect to π0 and π for k ∈ N. Then for all β ∈ [0, 1], j ≤ k,

V j is π(β)-integrable.

Proof. We begin by noting that for all L > 0, for β ∈ [0, 1], we have Lβ ≤ 1 + L. This implies,∫
X
|V (x)|kπ(β)(x)dx (134)

=
1

Z(β)

∫
X
|V (x)|kL(x)βπ0(x)dx (135)

≤ 1

Z(β)

∫
X
|V (x)|kπ0(x)dx+

1

Z(β)

∫
X
|V (x)|kL(x)π0(x)dx (136)

=
Z(0)

Z(β)

∫
X
|V (x)|kπ0(x)dx+

Z(1)

Z(β)

∫
X
|V (x)|kπ(x)dx (137)

< ∞. (138)

Therefore since V k is π0 and π-integrable, V k is π(β)-integrable. Finally by Jensen’s inequality we

have for j ≥ k,

∫
X
|V (x)|jπ(β)(x)dx ≤

(∫
X
|V (x)|kπ(β)(x)dx

) j
k

<∞. (139)

Proposition C.2. Suppose V k is integrable with respect to π0 and π for some k ∈ N then:

(a) Z ∈ Ck([0, 1]) with derivatives satisfying,

djZ
dβj

=

∫
X

(−1)jV (x)jL(x)βπ0(x)dx, (140)

for j ≤ k.

(b) g ∈ Ck−1([0, 1]) with derivatives satisfying,

djg

dβj
=

∫
X 2

(−1)j |V (x)− V (y)|(V (x) + V (y))jL(x, y)βπ0(x, y)dxdy, (141)

for j < k.

54

Proof. (a) Let h(x, β) = L(x)βπ0(x) = exp(−βV (x))π0(x) which satisfies,

∂j

∂βj
h(x, β) = (−1)jV (x)jL(x)βπ0(x). (142)

Note for all β ∈ [0, 1] and j ≤ k,

sup
β∈[0,1]

∣∣∣∣ ∂j∂βj h(x, β)

∣∣∣∣ ≤ |V (x)|jπ0(x) + |V (x)|jL(x)π0(x). (143)

The left hand side of (143) dominates ∂jh
∂βj

uniformly in β and is integrable by Lemma C.1.

The result follows using the Leibniz integration rule.

(b) Let h̃(x, y, β) = |V (x)−V (y)|L(x, y)βπ0(x, y). By noting logL(x, y) = −V (x)−V (y), we get

∂j

∂βj
h̃(x, y, β) = (−1)j |V (x)− V (y)|(V (x) + V (y))jL(x, y)βπ0(x, y). (144)

Similar to (a), we have for all β ∈ [0, 1], j ≤ k − 1,

sup
β∈[0,1]

∣∣∣∣ ∂j∂βj h̃(x, y, β)

∣∣∣∣ ≤ |V (x)− V (y)||V (x) + V (y)|jπ0(x, y)

+ |V (x)− V (y)||V (x) + V (y)|jL(x, y)π0(x, y), (145)

The left hand side of (145) dominates ∂j h̃
∂βj

uniformly in β. It is integrable by Lemma C.1 and

using the fact that V k is integrable with respect to π0 and π. The result follows using the

Leibniz integration rule.

Appendix D Proof of Proposition 4.7

Proof of Proposition 4.7. Let PN = {β0, . . . , βN}. There exists an i0 such that PN+1 = PN ∪ {β}
for some βi0 < β < βi0+1. Therefore,

E(PN+1)− E(PN) =
r(βi0 , β)

s(βi0 , β)
+
r(β, βi0+1)

s(β, βi0+1)
− r(βi0 , βi0+1)

s(βi0 , βi0+1)
(146)

=
r(βi0 , β)s(β, βi0+1) + s(βi0 , β)r(β, βi0+1)

s(βi0 , β)s(β, βi0+1)
− r(βi0 , βi0+1)

s(βi0 , βi0+1)
(147)

≤ r(βi0 , β) + r(β, βi0+1)

s(βi0 , β)s(β, βi0+1)
− r(βi0 , βi0+1)

s(βi0 , βi0+1)
(148)

≤ r(βi0 , β) + r(β, βi0+1)

1− r(βi0 , β)− r(β, βi0+1)
− r(βi0 , βi0+1)

s(βi0 , βi0+1)
. (149)

55

The last inequality holds since

s(βi0 , β)s(β, βi0+1) = (1− r(βi0 , β))(1− r(β, βi0+1)) (150)

≥ 1− r(βi0 , β)− r(β, βi0+1). (151)

By Corollary 4.3 we have

r(βi0 , β) + r(β, βi0+1) = r(βi0 , βi0+1) +O(‖PN‖3). (152)

which implies,

s(βi0 , β)s(β, βi0+1) ≥ s(βi0 , βi0+1) +O(‖PN‖3). (153)

and,

E(PN+1)− E(PN) ≤ r(βi0 , βi0+1) +O(‖PN‖3)

s(βi0 , βi0+1) +O(‖PN‖3)
− r(βi0 , βi0+1)

s(βi0 , βi0+1)
(154)

As ‖PN‖ → 0, we have the right hand side is asymptotically equivalent to zero. Therefore

E(PN+1) . E(PN) as ‖PN‖ → 0 and E(PN) is asymptotically decreasing.

To show that E(PN) asymptotically decreases to Λ, note that for all PN ,

N∑
i=1

r(i−1,i) ≤ E(PN) ≤ 1

minj s(j−1,j)

N∑
i=1

r(i−1,i). (155)

By Corollary 4.3 we have minj sj = 1+O(‖PN‖) and
∑N

i=1 r
(i−1,i) = Λ+O(‖PN‖2) which combined

with (155) implies

E(PN) = Λ +O(‖PN‖). (156)

Therefore as ‖PN‖ → 0, E(PN) converges to Λ at a O(‖PN‖) rate.

Appendix E Proof of Proposition 4.5

Proof of Proposition 4.5. For k = 1, 2 us define V
(β)
k

d
= V(X

(β)
k) where X

(β)
k ∼ π

(β)
d and V(x) =∑d

i=1 V (xi). The independence structure from Equation (46) tells us that V
(β)
k can be decomposed

as V
(β)
k =

∑d
i=1 V

(β)
ki where V

(β)
ki are iid with common distribution V (β), and therefore we have,

V
(β)
1 −V

(β)
2 =

d∑
i=1

V
(β)

1i − V
(β)

2i . (157)

56

The random variables {V (β)
1i −V

(β)
2i }di=1 are independent and identically distributed with mean zero

and variance 2σ2(β). By the central limit theorem,

V
(β)
1 −V

(β)
2√

2σ2(β)d
=

1√
d

d∑
i=1

V
(β)

1i − V
(β)

2i√
2σ2(β)

===⇒
d→∞

Z̃ ∼ N(0, 1). (158)

Thus we have

λd(β) =
1

2
E
[
|V(β)

1 −V
(β)
2 |
]

(159)

=
1

2

√
2σ2(β)dE

[∣∣∣∣∣V(β)
1 −V

(β)
2√

2σ2(β)d

∣∣∣∣∣
]
. (160)

The sequence of variables indexed by d in the expectation in (160) is also uniformly integrable.

This follows by noting that the second moment of the integrand in (160) is uniformly bounded in

d:

sup
d

E

∣∣∣∣∣V(β)
1 −V

(β)
2√

2σ2(β)d

∣∣∣∣∣
2
 = sup

d

1

2σ2(β)d

d∑
i=1

Var
[
V

(β)
1i − V

(β)
2i

]
= 1. (161)

By d→∞ and using (158) we have,

lim
d→∞

√
2

σ2(β)d
λd(β) = E|Z̃| =

√
2

π
, (162)

which proves (47).

To show (48), we use Cauchy-Schwarz

λd(β)√
d

=
1

2
√
d
E
[
|V(β)

1 −V
(β)
2 |
]

(163)

≤ 1

2
√
d

√
Var

[
|V(β)

1 −V
(β)
2 |
]

(164)

=
σ(β)√

2
. (165)

Finally, (47), (165) along with dominated convergence theorem yield

lim
d→∞

Λd√
d

=

∫ 1

0
lim
d→∞

λd(β)√
d

dβ =

∫ 1

0

σ(β)√
π

dβ. (166)

57

Appendix F Proof of scaling limit for reversible PT index process

We will prove Theorem 6.1 by using Theorem 17.25 from [Kal02].

Theorem F.1 (Trotter, Sova, Kurtz, Mackevic̆ius). Let X,X1, X2, . . . be Feller processes defined

on a state space S with generators L,L1,L2, . . . respectively. If D is a core for L, then the following

statements are equivalent:

1. If f ∈ D, there exist fN ∈ D(LN) such that ‖fN − f‖∞ → 0 and ‖LNfN − Lf‖∞ → 0 as

N →∞.

2. If XN (0) converges weakly to X(0) in S, then XN converges weakly to X in D(R+, S).

We will be applying Theorem F.1 with L = LW defined as LW f = 1
2f
′′ for f ∈ D(LW) where

D(LW) :=
{
f ∈ C2 ([0, 1]) : f ′(0) = f ′(1) = 0

}
, (167)

and LN = LWN defined in (68), which we recall here for the reader’s sake

LWN f(w) =
N2

2

∑
ε∈{±1}

(
f(ΦN

ε (w))− f(w)
)
s(βw, βΦNε (w)), w ∈ [0, 1] (168)

with ΦN
± (w) defined in (62), (63) and βw = G(w). Also recall from the discussion just before (68)

that LWN defines a Feller semigroup.

First notice that in [Kal02], the transition semi-group and generator of a Feller process taking

values in a metric space S are defined on C0(S), the space of functions vanishing at infinity.

Equivalently f ∈ C0(S) if and only for any δ > 0 there exists a compact set K ⊂ S such that

for x /∈ K, |f(x)| < δ. In our case since S = [0, 1] is compact C0(S) = C(S), which justifies the

definition of the generator LW given above.

The Feller property of LW . Similarly LW can be seen to define a Feller semigroup on C([0, 1])

by the Hille-Yosida theorem (see [Kal02, Theorem 19.11]). Indeed the first condition is satisfied

since any function f ∈ C([0, 1]) can be uniformly approximated within ε > 0 by a polynomial pε,

that is a smooth function, by the Stone-Weirstrass theorem. We can further uniformly approximate

pε within ε by a C2 function p̂ε with vanishing derivatives at the endpoints. For example one can let,

for a δ to be chosen later, p̂ε(x) = pε(x) for x ∈ (δ, 1−δ) and for x ≤ δ set p̂ε(x) =
∫ x

0 ρδ(y)p′ε(y)dy+c,

where ρδ is a smooth, increasing transition function such that ρδ(x) = 0 for x < 0, ρδ(x) = 1 for

x > δ 3 ; c is chosen so that p̂ε(x) is continuous at δ. A similar construction can be used for

the right-endpoint. One can then check that indeed p̂ε ∈ C2([0, 1]), p̂′ε(0) = p̂′ε(1) = 0 and that

for δ small enough ‖p̂ε − pε‖∞ < ε. The second condition of [Kal02, Theorem 19.11] also holds

by [Har85, Corollary 5.2]. The third condition of [Kal02, Theorem 19.11] can also be easily seen to

hold.
3e.g. let ρδ = ρ(x/δ), ρ(x) = g(x)/(g(x) + g(1− x)) and g(x) = exp(−1/x)1{x>0}

58

Now we can apply Theorem F.1 to prove Theorem 6.1. We only need to check the first condition

of Theorem F.1. In this direction, first note that by definition ΦN
± (w) = w± 1/N for w ∈ [1/N, 1−

1/N]. Thus in this case using Taylor’s theorem we have for w∗− ∈ [w−1/N,w] and w∗+ ∈ [w,w+1/N]

that

f(ΦN
+ (w))− 2f(w) + f(ΦN

− (w)) = f(w) +
1

N
f ′(w) +

1

2N2
f ′′(w∗+)

+ f(w)− 1

N
f ′(w) +

1

2N2
f ′′(w∗−)− 2f(w) (169)

=
1

2N2

(
f ′′(w∗+) + f ′′(w∗−)

)
. (170)

Since f ′′ is uniformly continuous it follows that as N →∞,

sup
w∈[0,1]

|f ′′(w∗±)− f ′′(w)| = o(1), (171)

and therefore for w ∈ [1/N, 1− 1/N] we have

sup
w∈[0,1]

∣∣∣f(ΦN
+ (w))− 2f(w) + f(ΦN

− (w))− f ′′(w)

N2

∣∣∣ = o

(
1

N2

)
. (172)

When w ∈ [0, 1/N) or w ∈ (1 − 1/N, 1] we instead perform a Taylor expansion around 0 or

1 respectively. We only do the calculation in the first case, the other one being similar. Let

w ∈ [0, 1/N) in which case, since f ′(0) = 0, for w∗, w∗−, w
∗
+ ∈ [0, 2/N]

f(ΦN
+ (w))− 2f(w) + f(ΦN

− (w)) = f(0) + ΦN
+ (w)f ′(0) +

1

2

[
ΦN

+ (w)
]2
f ′′(w∗+)

+ f(0) + ΦN
− (w)f ′(0) +

1

2

[
ΦN
− (w)

]2
f ′′(w∗−)

− 2f(0)− 2f ′(0)w − 2
f ′′(w∗)

2
w2 (173)

=
f ′′(0)

2

{[
ΦN

+ (w)
]2

+
[
ΦN
− (w)

]2 − 2w2
}

+ o
(
N−2

)
(174)

where the error term is uniform in w and was obtained by combining the facts that f ′′ is

uniformly continuous and that |ΦN
± |, |w|/ ≤ 2/N . Finally notice that since w ∈ [0, 1/N]

[
ΦN

+ (w)
]2

+
[
ΦN
− (w)

]2 − 2w2 =

[
w +

1

N

]2

+

[
1

N
− w

]2

− 2w2 =
2

N2
. (175)

Finally we will need the following weaker version of Theorem 4.1, whose proof we postpone

until the end of the section.

59

Lemma F.2. Suppose that π(|V |), π0(|V |) <∞. Then there exists a constant C > 0 such that

sup
β
|s(β, β + δ)− 1| ≤ Cδ. (176)

Using the above Lemma we can thus see that for some constant C > 0

sup
w∈[0,1]

∣∣∣s(βw, βΦN± (w)

)
− 1
∣∣∣ ≤ C sup

w

∣∣G(w)−G
(
ΦN
± (w)

)∣∣ ≤ C‖G′‖∞
N

, (177)

and therefore

LNf(w) =
N2

2

∑
ε∈{±1}

(
f(ΦN

ε (w))− f(w)
)
s(βw, βΦNε (w)) (178)

=
N2

2

∑
ε∈{±1}

(
f(ΦN

ε (w))− f(w)
) [

1 + o(N−1)
]

(179)

=
N2

2

(
f(ΦN

+ (w))− 2f(w) + f(ΦN
− (w))

) [
1 + o(N−1)

]
=
N2

2

f ′′(w)

N2
[1 + o(1)] , (180)

where the error term as shown above is uniform in w. Thus LNf → Lf uniformly.

Proof of Lemma F.2. Using the bound 0 ≤ 1− exp(−x) ≤ x for x ≥ 0 we have

∣∣s(β, β′)− 1
∣∣

≤
∫ ∫

π(β)(dx)π(β′)(dy)
[
1− exp

(
−max

{
0, (β′ − β)[V (x)− V (y)]

})]
(181)

≤ |β′ − β|
∫ ∫

π(β)(dx)π(β′)(dy) max
{

0, [V (x)− V (y)]
})]

(182)

≤ |β′ − β|
∫ ∫

π(β)(dx)π(β′)(dy)
(
|V (x)|+ |V (y)|

)]
≤ 2|β′ − β| sup

β
π(β)(|V |). (183)

Appendix G Proof of scaling limit for non-reversible PT index

process

We will prove Theorem 6.2 in a slightly round about way. We will define auxiliary processes {UN (·)},
{U(·)} living on the unit circle S1 := {z ∈ C : |z| = 1} along with a mapping φ : S1 7→ [0, 1]×{±1}
such that ZN = φ(UN) and Z = φ(U). We will first show that the law of UN converges weakly to

U .

Before defining the processes we point out that we will identify S1 with [0, 2π) in the usual way

by working in mod 2π arithmetic. Notice that in this way

C(S1) = {f ∈ C([0, 2π]) : f(0) = f(2π)}. (184)

60

The reason for working with these auxiliary processes is that we can now avoid working with

PDMPs with boundaries, helping us to remove a layer of technicalities.

For any N we define ΣN : S1 7→ S1 through ΣN (θ) = θ + 2π/N . Consider then a continuous-

time process UN that jumps at the arrival times of a homogeneous Poisson process with rate N

according to the kernel

QN (θ,dθ′) = s
(
β̃θ, β̃ΣN (θ)

)
δΣN (θ)(dθ

′) +
[
1− s

(
β̃θ, β̃ΣN (θ)

)]
δ2π−θ(dθ

′) (185)

where

β̃θ =

G
(
θ
π

)
, θ ∈ [0, π),

G
(

2π−θ
π

)
, θ ∈ [π, 2π).

(186)

Define the map

φ(θ) =


(
θ
π ,+1

)
, θ ∈ [0, π),(

2π−θ
π ,−1

)
, θ ∈ [π, 2π).

(187)

Essentially we think of the circle as comprising of two copies of [0, 1] glued together at the end

points. The top one is traversed in an increasing direction and the bottom one in a decreasing

direction. When glued together and viewed as a circle these dynamics translate in a counter-

clockwise rotation with occasional reflections w.r.t. the x-axis at the time of events. With this

picture in mind it should be clear that φ(UN) = ZN .

We also define the limiting process U as follows. First let

λ̃(θ) = (λ ◦G)(φ1(θ))G′(φ1(θ)), (188)

where φ1(θ) is the first coordinate of φ(θ). Notice at this point that φ1 : S1 7→ [0, 1] is continuous

and satisfies φ1(θ) = φ1(−θ) for any θ ∈ [0, 2π), whence we obtain that λ̃(−θ) = λ̃(θ). Given

U(0) = θ, let T1 be a random variable such that

P[T1 ≥ t] = exp

{
−
∫ t

0
λ̃(θ + s)ds

}
, (189)

and define the process as U(s) = θ+ s mod 2π for all s < T1 and set U(T1) = −U(T1−) mod 2π.

Iterating this procedure will define the S1-valued PDMP {U(·)}. We first need the next lemma.

Lemma G.1. Suppose V is integrable with respect to π0 and π. The process U defined above is a

Feller process, its infinitesimal generator is given by

LUf(θ) = f ′(θ) + λ̃(θ) [f(2π − θ)− f(θ)] , (190)

with domain

D(LU) = {f ∈ C1([0, π]) : f(0) = f(2π)}, (191)

and invariant measure dθ/2π.

61

Proof. First, note that since S1 is compact C0(S1) = C(S1) and thus to study the Feller process we

consider the semi-group {P tU}t defined by the process U as acting on C(S1). To prove the Feller

property we can thus use [Dav93, Theorem 27.6]. Since there is no boundary in the definition of U

the first assumption is automatically verified, Qf(θ) = f(−θ) ∈ C
(
S1
)

for any continuous f . We

also know that the rate λ̃ is bounded whereas by Proposition 4.2 and the fact that G ∈ C1[0, 1] we

know that λ̃ is also continuous. Therefore the third condition of [Dav93, Theorem 27.6] holds and

thus U is Feller.

The infinitesimal generator will be defined on D(LU) ⊆ C(S1). The domain is defined as the

class of functions f ∈ C(S1) such that

g(θ) = lim
h→0

1

h

[
P tUf(θ)− f(θ)

]
∈ C(S1), (192)

where the limit is uniform in θ. However by [BSW13, Theorem 1.33], we can also consider pointwise

limits without enlarging the domain. Using the definition of U we then have for θ ∈ [0, 2π) that

1

h
Eθ [f(Uh)− f(θ)] =

1

h
f [(θ + h)− f(θ)]Pθ [T1 ≥ h] +

1

h
Eθ [(f (Uh)− f(θ))1 {T1 ≤ h}] . (193)

Since for x ≥ 0 we have | exp(−x)−1+x| ≤ Cx2 for some constant C > 0, and using the continuity

of λ̃ we can see that ∣∣∣∣exp

{
−
∫ h

0
λ̃(θ + s)ds

}
− 1 + λ̃(θ)h

∣∣∣∣ ≤ Ch2, (194)

and thus

1

h
f [(θ + h)− f(θ)]Pθ [T1 ≥ h] =

1

h
f [(θ + h)− f(θ)] (1 + o(h)) . (195)

In addition

1

h
Eθ [(f (Uh)− f(θ))1 {T1 ≤ h}]

=
1

h

∫ h

0
λ̃(θ + s) exp

{
−
∫ s

0
λ̃(θ + r)dr

}
ds
[
P h−sU Qf(θ)− f(θ)

]
(196)

→ λ̃(θ) [Qf(θ)− f(θ)] , (197)

for any f ∈ C(S1) by strong continuity of {P tU} (Feller property) and continuity of λ̃.

Overall we thus have that f ∈ D(LU) if and only if

1

h
Eθ [f(Uh)− f(θ)] =

f(θ + h)− f(θ)

h
+ λ̃(θ) [Qf(θ)− f(θ)] + o(1) (198)

→ g(θ) ∈ C(S1), (199)

62

which is clearly equivalent to f ∈ C1(S1).

Finally to see that dθ/2π is invariant, having identified the domain we can easily check that for

any f ∈ C(S1) we have ∫
dθP tUf(θ) =

∫ t

s=0

∫
dθLUP sUf(θ)dθds. (200)

Since f ∈ D(LU) we have that P sUg ∈ D(LU). Since for any g ∈ D(LU) we have∫
dθLUf(θ) =

∫ 2π

θ=0
f ′(θ)dθ +

∫ 2π

θ=0
λ̃(θ)f(Q(θ))dθ −

∫ 2π

θ=0
λ̃(θ)f(θ)dθ (201)

= f(2π)− f(0) +

∫ 2π

θ=0
λ̃(θ)f(Q(θ))dθ. (202)

Proposition G.2. Suppose UN (0) converges weakly to U(0), then UN converges weakly to U in

D(R+, [0, 1]).

Proof. We will once again use Theorem F.1. The generator of UN is given by

LNU f(θ) = N [f(θ + 1/N)− f(θ)] s
(
β̃θ, β̃ΣN (θ)

)
+N [f(−θ)− f(θ)] r

(
β̃θ, β̃ΣN (θ)

)
. (203)

We will consider the two terms separately. To this end notice that by (44), the boundedness of

λ and the fact that G ∈ C1[0, 1] ∣∣∣1− s(β̃θ, β̃ΣN (θ)

)∣∣∣ ≤ C

N
, (204)

for some C > 0. Thus, using the mean value theorem, for each θ ∈ [0, 2π), there exists gN (θ) ∈
[θ, θ + 1/N] such that

N [f(θ + 1/N)− f(θ)] s
(
β̃θ, β̃ΣN (θ)

)
= f ′ (gN (θ)) (1 +O(1/N)) = f ′ (θ) ((1 + o(1)) , (205)

where the errors are uniformly bounded and to obtain the second equality above we have used the

fact that |gN (θ) − θ| ≤ 1/N and that f ′ is uniformly continuous, being continuous on a compact

set.

Overall we can see that as N →∞

sup
θ

∣∣∣N [f(θ + 1/N)− f(θ)] s
(
β̃θ, β̃ΣN (θ)

)
− f ′(θ)

∣∣∣→ 0. (206)

Next, using (44) we have that

r
(
β̃θ, β̃ΣN (θ)

)
= λ̃(θ)

1

N
+ o(N−1), (207)

63

where the error is uniform in θ, whence we easily conclude that

N [f(−θ)− f(θ)] r
(
β̃θ, β̃ΣN (θ)

)
→ λ̃(θ) [Qf(θ)− f(θ)] , (208)

uniformly in θ.

Proof of Theorem 6.2 Now we are ready to prove the main result of this section. Notice that

ZN (·) = φ
(
UN (·)

)
and Z(·) = φ (U(·)).

From Proposition G.2 we know that the finite dimensional distributions of UN converge to those

of U . If φ were continuous we could conclude using the continuous mapping theorem. Since it is

not continuous at the points {0, 1}, we will be using [Bil13, Theorem 2.7]. We have to check that

the law of the limiting process, that is the law of {U(·)} places zero mass on finite dimensional

distributions that hit {0, 1}, that is for n ∈ N and 0 < t1 < · · · < tn we want

P [U(ti) ∈ {0, 1} for some i ∈ {1, . . . , n}] = 0, (209)

when U(0) is initialized according to dθ/2π. But the above follows from the fact that P[U(ti) ∈
{0, 1}] = 0, by stationarity when U(0) is initialised uniformly on S1.

Relative compactness of {ZN (·)}N can be easily seen to follow from the compact containment

condition [EK09, Remark 3.7.3]. This combined with convergence of the finite dimensional distri-

butions of ZN to those of Z concludes the proof.

64

	Introduction
	Setup and notation
	Annealed distributions
	Parallel tempering
	Annealing trajectories and the index process

	Non-asymptotic analysis of PT
	Model of compute time
	Performance metrics for PT methods
	Index process as a Markov chain
	Non-asymptotic domination of non-reversible PT

	Asymptotic analysis of PT
	The communication barrier
	Asymptotic analysis of round trip rate

	Tuning non-reversible PT algorithms
	Optimal round trip rate
	Optimal annealing schedule
	Estimation of the communication barrier
	Adaptive algorithm

	Scaling limit of annealing trajectories
	Scaled index process
	Scaling limit of scaled index process

	Experiments
	Tractable meta-models
	Effects of ELE violation
	Comparison with other parallel tempering schemes

	Discussion
	References
	Invariant distribution of KPTn
	Proof of Proposition 3.1
	Proof of Proposition 4.2
	Proof of Proposition 4.7
	Proof of Proposition 4.5
	Proof of scaling limit for reversible PT index process
	Proof of scaling limit for non-reversible PT index process

