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Abstract

Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes
used to explore complex high-dimensional probability distributions. These algorithms can be
highly effective but their performance is contingent on the selection of a suitable annealing
schedule.

In this work, we provide a new perspective on PT algorithms and their tuning, based on
two main insights. First, we identify and formalize a sharp divide in the behaviour and per-
formance of reversible versus non-reversible PT methods. Second, we analyze the behaviour of
PT algorithms using a novel asymptotic regime in which the number of parallel compute cores
goes to infinity. Based on this approach we show that a class of non-reversible PT methods
dominates its reversible counterpart and identify distinct scaling limits for the non-reversible
and reversible schemes, the former being a piecewise-deterministic Markov process (PDMP) and
the latter a diffusion. In particular, we identify a class of non-reversible PT algorithms which is
provably scalable to massive parallel implementation, in contrast to reversible PT algorithms,
which are known to collapse in the massive parallel regime. We then bring these theoretical
tools to bear on the development of novel methodologies. We develop an adaptive non-reversible
PT scheme which estimates the event rate of the limiting PDMP and uses this estimated rate
to approximate the optimal annealing schedule.

We provide a wide range of numerical examples supporting and extending our theoreti-
cal and methodological contributions. Our adaptive non-reversible PT method outperforms
experimentally state-of-the-art PT methods in terms of taking less time to adapt, as well as
providing better target approximations. Our scheme has no tuning parameters and appears in
our simulations robust to violations of the theoretical assumption used to carry out our anal-
ysis. The method is implemented in an open source probabilistic programming available at
https://github.com/UBC-Stat-ML/blangSDK.
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1 Introduction

Problem formulation. Markov Chain Monte Carlo (MCMC) methods are widely used to ap-
proximate expectations with respect to a probability distribution with density m(z) known up to
a normalizing constant, i.e., w(z) = y(z)/Z where v can be evaluated pointwise but the normal-
izing constant Z is unknown. Approximating such expectations is of central importance in the
vast majority of modern Bayesian analysis scenarios as well as frequentist models with complex
random effects. In both cases, y(z) can be written as a likelihood L(z) times a prior mo(z), and
the distribution of interest is a posterior distribution over a variable x € X. When the posterior
distribution has multiple well-separated modes, highly varying curvature or when one is interested
in sampling over combinatorial spaces, standard MCMC algorithms such as Metropolis—Hastings,
slice sampling and Hamiltonian Monte Carlo can perform very poorly. This work is motivated by
the need for practical methods for these difficult sampling problems and a natural direction is to

use multiple cores and/or to distribute the computation.
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Figure 1: Stochastic Even-Odd swaps (SEO, top row) and Deterministic Even-Odd swaps (DEO, bottom
row) for PT, ran with N = 8 chains (left column) and N = 30 chains (right column) on a Bayesian change-
point detection model applied to text message data | ]. Even swap moves (rows labelled ‘E’) propose to
exchange states at chains with an even index ¢ with the corresponding state in chain ¢+ 1. Each such swap is
independently accepted (green oblique edges) or rejected (red horizontal edges) according to a Metropolis—
Hastings step. Odd swap moves (rows labelled ‘O’) propose between odd index 7 and i+1. The only difference
between DEO and SEO is the way these moves are composed: in SEQ, they are selected at random, while
in DEO, the two are deterministically alternated. For both SEO and DEO, exploration kernels are used
between each swap round (not shown). This sequence of moves forms N + 1 annealing parameter trajectories
(paths formed by the red and green edges) in the space of annealing parameters [0,1]. We show one such
paths B,, in bold as a visual aid. Here for simplicity we use equally spaced annealing parameters. From
this figure it is evident that this choice is suboptimal: notice that most swaps between the prior and chain
B =1/N are rejected. This is corrected by adaptive tuning (Section 5.4).

Background: Parallel Tempering (PT). One popular approach for multi-core/distributed

exploration of complex distributions is Parallel Tempering (PT) which was introduced indepen-



dently in statistics | | and physics | |; see also [ | for an earlier related proposal.
Since its inception, PT remains to this day the go-to “workhorse” MCMC method to sample
from complex multi-modal target distributions arising in physics, chemistry, biology, statistics,
and machine learning; see, e.g., | , , , , , ]. A recent empirical
benchmark [ | shows PT methods consistently outperform other state-of-the-art sampling
methods in practice.

To sample from the distribution of interest w, PT introduces a sequence of auxiliary tempered or
annealed probability distributions with densities 7(%) () oc L(z)%mg(z). The auxiliary distributions
are parameterized by an annealing schedule, which consists of an increasing sequence of annealing
parameters 0 = By < (1 < --- < By = 1. This bridge of auxiliary distributions is used to
progressively transform samples from the prior (5 = 0), for which it is often possible to obtain
independent samples, into samples from the posterior distribution (8 = 1), for which only poorly
mixing MCMC kernels may be available.

More precisely PT algorithms are based on Markov chains in which the states are (N +1)-tuples,
x = (20 2t 22, ..., acN) € XN+ The augmented MCMC sampler is designed so that its stationary
distribution is given by m(x) = HZ]\; 0 7B (2%). At each iteration n, PT proceeds by applying in
parallel N + 1 MCMC kernels targeting 7B for i = 0,..., N. We call these model-specific kernels
the exploration kernels. The chains closer to the prior chain (i.e. those with annealing parameter [
close to zero) can traverse regions of low probability mass under 7w while the chain at § = 1 ensures
that asymptotically we obtain samples from the distribution of interest. Frequent communication
between the chains at the two ends of the spectrum is therefore critical for good performance, and
achieved by proposing to swap the states of chains at adjacent annealing parameters. These propos-
als are accepted or rejected according to a Metropolis mechanism inducing a random permutation

of the N + 1 components of x.

Background: Tuning PT. The effectiveness of PT is determined by how quickly the swapping
scheme can transfer information from the prior chain to the posterior chain. There have been
many proposals made to improve this information transfer by adjusting the annealing schedule;
see, e.g., | , , | or adaptively reducing annealing parameters; see, e.g., | ].
These proposals are useful but do not address a crucial limitation of PT, illustrated in the top
row of Figure 1: in standard PT algorithms, each annealing parameter trajectory (shown in bold
in Figure 1 and formally defined in Section 2.3) exhibits a diffusive behaviour, hence we can ex-
pect that when N is large it takes roughly O(N?) swap attempts for a state at By = 0 to reach
Oy =1] |. The user thus faces a trade-off. If N is too large, the acceptance probabilities
of the swap moves are high but it takes a time of order O(N?) for a state at 8 = 0 to reach
6 = 1. If N is too low, the acceptance probabilities of swap moves deteriorate resulting in poor
mixing between the different chains. Informally, even in a multi-core or distributed setting, for
N large, the O(N) gains in being able to harness more cores do not offset the O(N?) cost of the

diffusion (see Figures 4, and Section 3.4 where we formalize this argument). As a consequence,



the general consensus is that the temperatures should be chosen to allow for about a 20-40% ac-
ceptance rate to maximize the square jump distance travelled per swap in the space of annealing
parameters [0, 1] [ , , ]. Previous work has shown that adding more chains past
this threshold actually deteriorates the performance of PT and there have even been attempts to
adaptability reduce the number of additional chains | ]. This is a lost opportunity, since PT

is otherwise suitable to implementation on multi-core or distributed architectures.

Overview of our contributions. The literature on optimal PT tuning strategies has so far
implicitly assumed that the algorithm was reversible and/or serial. Our first contribution is a
rigorous, non-asymptotic result showing that a popular non-reversible PT algorithm introduced in
the physics literature, Deterministic Even-Odd swap (DEO) [ ], is guaranteed to outper-
form its reversible counterpart, which we call Stochastic Even-Odd swap (SEO); see Figure 1 for
an informal introduction to DEO and SEQ. This result holds under an efficient local exploration
condition that we argue is a reasonable model for scenarios of practical interest. The notion of
optimality we analyze, the round trip rate, is closely aligned to the running time of practical PT
algorithms; see Section 3.

Our second contribution is the asymptotic analysis of the round trip rate in which the number
of parallel chains and cores is taken to infinity (Sections 4-5). This novel asymptotic regime is
highly relevant to modern computational architectures such as GPUs and distributed computing,

and yields several additional results both theoretical and practical:

1. In particular, we show in Section 4 that in the non-reversible regime (DEO) for challenging
sampling problems one should use at least as many chains as the number of cores available.
This contrasts with the reversible algorithm SEQO, where adding more chains, even in a multi-
core setup, is eventually detrimental. In other words, for this non-reversible PT algorithm,
the optimal tuning recommendations are qualitatively different compared to reversible PT

algorithms.

2. While adding more parallel cores to the task improves the performance of non-reversible PT,
we show formally that there is a diminishing return in doing so for large N. We quantify
this diminishing return using both non-asymptotic bounds as well as an asymptotic analysis
letting both the dimension of the problem and the number of chains go to infinity (Section

4.1 and 4.2 respectively).

3. In Section 5 we analyze optimal annealing schedules using our high parallelism asymptotics.
We then develop a novel adaptive scheme (Procedure 3), which is both experimentally effective

and simple to implement.

Our third contribution is a novel analysis of the scaling limit for the annealing parameter
trajectories as the number of parallel chains goes to infinity (Section 6). We show that non-

reversible PT scales weakly to a Piecewise Deterministic Markov Process (PDMP) under realistic



conditions, contrasting with the diffusive limit we obtain for reversible PT. This offers intuition
explaining the fundamental differences observed between the round trip rates for non-reversible
and reversible PT as discussed in Section 3.4 and 4.2. The rate parameter of the limiting PDMP
is intimately connected to our adaptive scheme and provides more intuition on its behaviour.
Finally in Section 7, we present a variety of experiments to validate and extend our theoretical
analysis. We compare the performance of our non-reversible scheme with other state-of-the-art
adaptive PT methods. We also provide empirical evidence that our adaptive scheme is robust to

situations where a simplifying assumption used to carry out our theoretical analysis is violated.

Literature review. Previous theoretical studies analyzed the asymptotic behaviour of stan-
dard PT based on a target consisting of a product of independent components of increasing di-
mension | |, or an increased swap frequency relative to a continuous time sampling pro-
cess [ ]. We instead let the number of cores available in a massively parallel setup go to
infinity. One advantage of our approach is that, in contrast to these previous analyses, we do not
need to make assumptions on the structure of neither the target distribution (such as | ]
where they assume the target distribution is a product of d independent and identical distributions
and d is large) nor the exploration kernels (such as | ], where the exploration kernel is
assumed to be driven by a class of stochastic differential equations).

The DEO algorithm was proposed in | ]. This algorithm was presumably devised on
algorithmic grounds (it performs the maximum number of swap attempts in parallel) since no
theoretical justification was provided and the non-reversibility of the scheme was not mentioned.
The arguments given in | ] to explain the superiority of DEO communication over various
PT algorithms rely on an erroneous assumption, namely a diffusive scaling limit. We show in this
work that the scaling limit of non-reversible PT is actually not diffusive as the number of parallel
chains goes to infinity. In particular, [ ] still recommends to stop adding chains after a
target acceptance rate is achieved.

Another related PT algorithm is the Lifted Parallel Tempering algorithm (LPT), described

in | ]; see | | for a closely related idea developed in the context of simulated tempering,
and also [ | for an earlier attempt to build a non-reversible PT scheme which was later shown
not to be invariant with respect to the distribution of interest [ ]. These strategies are based

on a common recipe to design non-reversible sampling algorithms, which consists in expanding
the state space to include a “lifting” parameter that allows for a more systematic exploration of
the state space | , , , ]. We will show here that both LPT and DEO
are actually closely related in that the marginal behaviour of individual chains under DEQO is in
fact distributionally equivalent to the one LPT chain. In a multi-core/distributed context, the
DEO scheme therefore dominates LPT by having up to N/2 swaps per iteration whereas LPT only

performs one.



2 Setup and notation

2.1 Annealed distributions

Henceforth we will assume that the probability distributions « and 7y on X admit strictly positive

densities with respect to a common dominating measure dz. We will also denote these densities

somewhat abusively by 7 and my. It will be useful to define Vp(x) = —logmy(z) and V(x) =

—log L(z). Using this notation, the annealed distribution at an annealing parameter § is given by
L(z)Pmg(z) e AV @)-Vol)

) () — _
@) =""Zp) Z@) @

where Z(8) = [, L(z)’m(z)dx is the corresponding normalizing constant.

We denote an annealing schedule by 0 = By < 1 < -+ < By = 1, and in our asymptotic analysis
we will view it as a partition P = {fo,...,On} of [0,1] with mesh-size ||P|| = sup; {Bi — Bi—1}-
Given an annealing schedule P we define 7(x), the joint distribution on the augmented space XV *1,
by

w(x) = H’]T(Bi)(l‘i). (2)

2.2 Parallel tempering

In this section, we define formally the Markov kernels corresponding to the reversible (SEO) and
non-reversible (DEO) PT algorithms described informally in the introduction and in Figure 1. We

provide pseudo-code for the overall algorithm in Procedure 1.

The two phases of Parallel Tempering. For both SEO and DEO, the overall Markov kernel
KPT describing the algorithm is obtained by the composition of a exploration kernel K®P! and a

communication kernel K7™,
PT comm grexpl
K, " = KK, (3)

where K©M"MK®P! denotes the alternation of K™P' followed by K°™™ i.e. for any two transition
kernels K; and Ko, (K1K2)(x, A) = [ Ki(x,dx’)Ka(x’, A). The difference between SEO and DEO
is in the communication phase, namely K™ = K5FO in the former case and K™ = KPFO i

the latter. Both communication kernels are detailed further.

The exploration kernels. These are defined in the same way for both SEO and DEO. They are
also model specific, so we assume we are given one 7(%)-invariant kernel K%) for each annealing
parameter g, 51, ..., 8. These can be based on Hamiltonian Monte Carlo, Metropolis—Hastings,
Gibbs Sampling, Slice Sampling, etc. The exploration kernel of the prior chain can often be taken

to be 7, i.e. KO (z, Ag) = m(Ay). We construct the overall exploration kernel by applying the



annealing parameter specific kernels to each component independently from each other:

N
Kexpl(X7 AO X Al X .. AN) — HK(@)(%J,A%) (4)
1=0

Swap kernels. Before defining the communication scheme, it will be useful to first construct its
fundamental building block, the swap kernel KD, A swap kernel is a Metropolis—Hastings move
with a deterministic proposal which consists of permuting two coordinates of a state vector. The

proposed state is denoted

ey x). (5)

a7 (x) = min {1, ﬂ'(x(”))} (6)
= exp (min{0, (8; — B;)(V(27) = V("))}) . (7)
Let K(#7) denote the Metropolis-Hastings kernel corresponding to this update:
K09 (x, A) = (1 PNCE) (x>) Sx(A) + a9 (x)8, .5 (A), (8)
where 9§, denotes the Dirac delta.

The Odd and Even kernels. These kernels are maximal groups of swap moves such that members
of the group do not interfere with each other. See Figure 1 for an illustration. We first define the

even and odd indices:

E={i:0<i<N,iis even}, 9)
O={i:0<i< N,iisodd}. (10)

The corresponding even and odd kernels K" and K°% are then given by

Keven — H K+ godd _ H K i+1) (11)
i€E i€O

The communication kernel for SEO and DEO. For SEO, the kernel K™ = K5O is given

by a mixture of the odd and even kernels in equal proportion:
SEO 1 odd 1 even

For DEO, the kernel K™ = KPEO i5 given by a deterministic alternation between odd and even
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Figure 2: Illustration of the proposal, acceptance and swap indicators on a non-reversible realization.

kernels. This is encoded by the following time heterogeneous kernel

DO _ K" if n is even, (13)
n
K°d  if n is odd.

Proposal and swap indicators. In our theoretical analysis it will be useful to re-express the

exploration kernels in the following equivalent fashion. Let

P, = (POD, PR, PN, (14)

where P}f’j ) denotes an indicator that a swap is proposed (attempted) between chains ¢ and j at
iteration n. In DEO, P, is deterministic, i.e. P, = Peyen = (1,0,1,...) for even n and P,, =
Poaqa = (0,1,0,...) for odd n. In SEO, P,, ~ Unif{Peyen, Poaa}. We also set Pr(fﬂ’i) = P,(f’iﬂ).
To avoid having too many subscripts, we use the same random variables for SEO and DEO but
differentiate their behaviour by using two different probability measures Psgo and Ppgo with
associated expectation operators Eggo and Epgo. We use P and E for statements that hold for
both algorithms.

The swap proposals are then defined from the proposal indicators as
Sr(zi’j) _ Pr(Li’j)Ag’j)7 (15)

where A )|Xn ~ Bern(a(")(X,,)) are acceptance indicator variables (see Figure 2). The equiva-

lence between K®P! and this representation is given by

XT(LiJrl) i 57(;',141) —1,

X1 Xy ~ KOPUX, ) = X = x D 450D — 1 forallico,..,N.  (16)
X otherwise,

n



Permutation augmentation. Another useful construction is to add a permutation to the state
space to keep track of the cumulative effect of the swaps. The augmented state space becomes
AN+L x Perm([N]), where Perm([N]) denotes the group of bijections of {0,1,2,...,N}. A first
instance where this construction is useful is in the context of PT algorithms distributed over several
compute nodes or machines. In this context a key implementation point is that instead of having
pairs of machines exchanging states when a swap is accepted (which could be detrimental due to
network latency and lower throughput), the machines should exchange annealing parameters. If
0,1,2,...,N are indices for N + 1 machines, then the permutation o,, € Perm([N]) at iteration n
encodes that machine i is currently responsible for annealing parameter j3;, ;). Formally, the swap

kernel in the augmented space is defined as:
KO (%, A x {0'}) = (1= a9 (x)) de( Ao’ = 0] + a9 ()30 (Ao’ = (i j) o 0], (17)

where X = (x,0) denotes an augmented state, (i j) € Perm([NN]) denotes a transposition (swap)
between i and j, and (i j) oo is the composition of o followed by the swap (i j). We abuse notation
here and denote the kernel in the augmented space with the same symbol. The exploration kernel

does not cause swaps, so in the permutation-augmented space we set it to
KP((x,0), Ag x A1 X ... Ay x {0'}) =I[0’" = o]K™P!(x, Ag x A1 x ... Ap),

with a similar abuse of notation.

Invariant distribution. The kernels K®P' K50 KPFO and hence KFT are all invariant with
respect to
T(x,0) = —7(x). (18)

See Appendix A for details.

Non-reversibility of DEO. Written as an homogeneous Markov chain, DEO takes the form
KeVen KPPl Tf N > 1, this kernel is in general non-reversible (it satisfies global balance
but not detailed balance). Examples violating detailed balance can be constructed using a uniform
likelihood, L(z) o 1, in which case m = mp and swaps are systematically accepted. Non-reversibility

will be explored more deeply in Section 3.3.

Reversibility of SEO. Let us assume that the exploration kernel can be decomposed as K&P! =
K'/2K'/2. This is a reasonable assumption: often K®P! is itself a composition of Nexpl €xploration
passes, we are just assuming here that neyp is even. In this case, it is reasonable to analyse the
kernel K'/2KSFOK1/2 Since this kernel is palindromic, if K'/? is reversible then the palindrome is
also reversible. We will refer to the PT algorithm with SEO and DEO communication as reversible

PT and non-reversible PT respectively even when K*P' is non-reversible.



Procedure 1 Non-reversible PT (number of scans n, annealing schedule P)

1 @) 0 for all i € {0,1,...,N — 1} > Swap rejection statistics used in 5.4 to adapt
2: X < Xq > Initialize chain
3: fortin1l,2,...,ndo

4: for kin 1,2,..., nexp do

5: x' ~ K™Pl(x, ) > Exploration phase (embarrassingly parallel)
6: X x'

7 if t is even then > Non-reversibility inducing alternation
8: S+ FE > Equation (9)
9: else

10: S+ O > Equation (10)
11: foriin0,...,N —1do > Communication phase (embarrassingly parallel)
12: a — ot (x)

13: FOHD) o p0HD) 4 (1 — @)

14: A ~ Bern(a)

15: if ie Sand A =1 then

16: (2t oY)« (2L 2?) > Equation (7).
17: Xt < X

18: #0AFD) « #Gi+D) /i for all 4 € {0,1,...,N — 1} > Equation (57)
19: return (xy,...,Xy), (72(0,1)7 .. ,f’(N_LN))

2.3 Annealing trajectories and the index process

Chains and replicas. We will refer to the sequences X! and Xg"(i), as the i-th chain and replica

respectively. The i-th chain tracks the sequence of states with annealing parameter (5; and the

replica tracks the sequence of states on machine 3.

Annealing trajectories. Closely related to the replica, we define the annealing trajectory for
index i by B! = B, (iy- As discussed in the last section, index i can be interpreted as a machine in
a distributed context. We will use the notation B,, when ¢ is unimportant. The annealing trajec-
tory tracks the sequence of annealing parameters that machine ¢ is responsible of, as a function of
the iteration index n. The concept is best understood visually: refer to the bold piecewise linear
path in Figure 1. We shall see in Section 3 that annealing trajectories encode the impact of the
communication kernel in PT algorithms, and will allow us to illuminate fundamental differences

between reversible and non-reversible PT.

Index process. To analyse the annealing trajectory B! = Bon (i), 1t Will be equivalent and easier
to study the sequence I’ = 0,(i). For the remainder of this section we will introduce an alternative
recursive construction to give intuition on the dynamics of I’. This recursion forms the basis for
the analysis in the rest of the paper.

We define the index process for machine i as Y,! = (I%,e!) € {0,...,N} x {—1,1} and use the

n

notation Y, = (I,,&,) when ¢ is unimportant. Initialize Iy = i and g9 = 1 if Po(i’iﬂ) = 1 and

10



€9 = —1 otherwise. For n > 0, we have

I+, if SYmImten) — g,
In1 = (19)

I, otherwise,

and,
1 if pifmrnfe ) — g

En+l = (20)
—1 otherwise.

The variables ¢, represent the direction B,, proposed at iteration n. For SEO communication,
the variables e, are independent and identically distributed and equal to 1 or —1 with equal
probability, and consequentially the annealing trajectories exhibit a random walk behaviour. In
contrast for DEO communication, we have €,11 = €, so long as the proposal involving replica ¢ was
accepted and €,41 = —&, otherwise. Therefore annealing trajectories for non-reversible PT have a
persistence in one direction and only change when a swap involving replica i is rejected or if the

boundary is reached. The qualitative differences between the two regimes can be seen in Figure 1.

3 Non-asymptotic analysis of PT

In this section, we motivate a formal notion of computational efficiency for SEO and DEO, the
round trip rate, denoted 7sgo and 7sgo for the two algorithms, and provide conditions under which

non-reversible DEO is guaranteed to perform better than its reversible counterpart, 7sgo < T™DEO.

3.1 Model of compute time

We start with a definition of what we model as one unit of compute time: throughout the paper,
we assume a massively parallel computational setup, and hence that sampling once from each of
the kernels K®®!, KEEO and K5FO takes one unit of time, independently of the number of chains
N + 1.

This assumption is realistic in both GPU and parallel computing scenarios, since the commu-
nication cost in PT only involves pairs of neighbours, and moreover does not increase with the
dimensionality of the problem (as explained when we introduced the permutation augmentation
in Section 2.2). In particular, all simulations considered in this work involve at most an order
of tens to hundreds of chains (see for example Fig 16 for an example with up to 640 chains), so
they are within reach of current commodity hardware: for example GPUs used in modern scientific
applications often have roughly 1,000—5,000 cores as of 2019.

We also assume that the number of MCMC iterations will still dominate the number of parallel
core available, i.e. n > N. This is reasonable since the focus of this paper is in challenging sampling
problems.

Empirical studies on multi-core and distributed implementation of PT are numerous | ,

, |. However, despite its practical relevance, we are not aware of previous theoretical

11



work investigating this computational model for PT. From now on, all analysis and recommenda-

tions in this paper assume a parallelized or distributed setup.

3.2 Performance metrics for PT methods

The standard notion of computational efficiency of MCMC schemes is the effective sample size (ESS)
per compute time | |. However, for PT methods, since the ESS per compute time depends on
the details of the exploration kernels K (%) alternatives have been developed in the literature. These
alternative metrics allow us to give a representative analysis of PT as a “meta-algorithm” without
reference to the specifics of the exploration kernels. In this section we motivate and describe the
round trip rate, one such PT performance metric popular in the PT literature | , .
The notion of round trip rate seems a priori somewhat disconnected to ESS per compute time, so
we first introduce a more intuitive notion, the restart rate, and then show that the restart and

round trip rates are essentially equivalent.

Tempered restarts. Our definition of a tempered restart is motivated by situations where the
prior chain (5 = 0) provides one independent sample at each iteration. In this context, notice
that each sample from the prior chain will either “succeed” in getting propagated to the posterior
chain (8 = 1), or “fail” and come back to the prior chain. The number of tempered restarts 7,
is defined as the number of distinct independent samples generated by the prior chain which are
successfully propagated, via communication and exploration steps, to the posterior chain during
the first n iterations. This notion of optimality is not the full picture since intermediate chains
also perform exploration, but nonetheless captures the essence of difficult multi-modal problems
where only an independent initialization combined with successive exploration and communication
steps can reach distinct modes in reasonable computational time. Informally, a tempered restart
can be thought of as a sampling equivalent to what is known in optimization as a random restart.
We define the restart rate as Tyestart = limy 00 E[75]/n. Note also that each tempered restart is

carried by one of the N 4 1 annealing trajectories, so we can decompose the tempered restarts as

Tn=T2+T +--+TN.

Round trips. Next, we say a round trip has occurred for replica ¢ when the annealing trajectory
for replica i successfully increases from 5 = 0 to § = 1 and back to 8 = 0. Formally, we recursively
define Tio =inf{n: (I},e) = (0,—1)} and for k > 1,

TTi,k = lnf{n > Tj,k:—l : (I;’Hez) = (Nv 1)}7 (21)

n

T, =inf{n >T{, : (I},e) = (0,-1)}. (22)

n

We say the k-th round trip for replica ¢ occurred at iteration Tf e Let R: denote the num-
ber of round trips for replica i in the first n iterations, and R, = RY + RL + -+ + RY be the

total number of round trips. We define the round trip rate as Tround trip = iMoo E[Ry]/n.

12



This metric is commonly used in the literature to compare the effectiveness of various PT algo-
rithms | , )1

Equivalence: each restart, except possibly for the last one, coincides with a round trip in one of the

annealing trajectories. Hence, 7,/ < R}, < T,i+1,50 T, < Ry < Tu+N, and T = Tyound trip = Trestart-

Alternative PT performance metrics. Another performance metric used in the PT literature

is the expected square jump distance (ESJD) | , |, defined as
ESID =E | (8111 — B1)? a1+ (X)) (23)

where I ~ Unif{0,1,2,..., N} and X ~ w. While this criterion is useful within the context
of reversible PT for selecting the optimal number of parallel chains, it is too coarse to compare
reversible against non-reversible PT methods. Indeed, for any given annealing schedule, the EJSD
for DOE and SEO are identical. More generally, the metric is less directly aligned to the quantity
practitioners care about, which is the restart rate.

The work of | | proposes to use the relaxation time of the process I,. However, in our
context this ignores the special structure of the chain at § = 0, which is an independent sequence

of random variables distributed according to .

3.3 Index process as a Markov chain

The analysis of the round trip times is in general intractable because the index process Y;, is not
Markovian. This is because simulating a transition depends on the acceptance indicators Ag A+1)
(see Equation (15)), the distributions of which themselves depend on the full state configuration
X. If we further assume that the sequence X,, is stationary and the exploration kernel is “locally
efficient,” as defined below, we obtain that the index process Y, is actually Markovian, and this will
allow us to analytically compute round trip rates for both SEO and DEO communication schemes.

We formally outline these assumptions below.

Stationarity. We assume Xg ~ 7 and thus X,, ~ 7 for all n as the kernel KTF;T is 7r-invariant.
An important observation that follows from assuming the stationarity regime is that the marginal
behaviour of the communication scheme only depends on the distribution of the state X,, via
N + 1 univariate distributions, namely the N + 1 distributions of the chain-specific energies V() =
Vv (X(i)), i €{0,1,2,...,N}. To see why, note that if X,, ~ 7, then by the definition of the

stationary distribution, and Equation (7), the random variables V(@ are independent, and
A+ (X) = exp (min {o, (Bit1 — Bi) (V(”l) - V(i)) }) . (24)

Remarkably, this observation allows us to build a theoretical analysis of PT which makes no as-

n | , ] the round trip rate per annealing trajectory was optimized, i.e. Tround trip/ (N + 1).
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sumption on the nature of the state space X'. In contrast, previous work such as [ | assumed

a product space X = Xod for large d.

Efficient Local Exploration (ELE). Let V and V' denote the negative log-likelihood before and
after an exploration step for any chain i, V = V(X), V! = V(X') for X ~ 7(%) X'|X ~ KB (X, ).
The ELE assumption posits that ¥V and V' are independent.

This condition is more reasonable than it may appear at first glance and it is weaker than as-
suming that X and X’ are independent as typically done in the literature | , |. Consider
for example a scenario where we seek to explore the posterior distribution of a mixture model with
symmetries induced by label switching. In such cases, being able to design exploration kernels such
as V and V' are approximately independent can be understood as being able to efficiently visit a
neighbourhood of one of the local maxima. In contrast, being able to sample X’ independently
from X would defy the need for using PT in the first place.

These two assumptions are assumed to hold throughout the paper. The assumptions are not
expected to be exactly satisfied in real problems. However, they provide the foundations of a model
for PT algorithms. We validate the predictions made by the model in Section 7.2 and empirically
show robustness in performance even when the ELE assumption is violated. We also provide an
heuristic argument to explain why our theoretical results appear robust to ELE violations for non-
reversible PT. Moreover, the model is used to make algorithm optimization choices such as picking
annealing parameters, and even if a slightly suboptimal PT algorithm is used, this PT algorithm
still exactly targets the distribution of interest. Previous work on analyzing PT has also made

modelling assumptions that are not expected to hold in practice but yield useful guidelines.

Markov transition kernel for the index process. Under ELE, we can express the accep-
tance indicators as independent Bernoulli random variables Aq(f D Bern(s(#**1)). The constant

51 is given by the expectation of Equation (24),

st — | [a(i’iﬂ)(X)} =E [exp (min {O, (Bi+1 — Bi) (V(Hl) - V(i)) })} , (25)

where the expectation is over two independent random variables V® V 0+ = gatisfying V) 4

V(X)) for XB) ~ 7(8)_ From this, we obtain that Y, = (I,,&,) is Markovian under ELE by
mirroring the construction in Section 2.3.

For SEO, initialize Iy = ¢ and g9 ~ Unif{—1, 1}. Define the Markov transition kernel, Y;,41|Y,, ~

Psgo(Yy, ) via chain rule in two steps. In the first step, simulate

(i+e)ANVO with probability s(#+e)

Iny1|Yn = (i,€) ~ (26)

i otherwise,

where the expression “AN V 0” enforces the annealing parameter boundaries. In the second step,

independently sample €41 ~ Unif{—1,41}.
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Similarly for DEQ, initialize Iy = ¢ and g9 = 1 if 7 is even and —1 otherwise. Analogous to the
SEO construction, we define Y;,11|Y,, ~ Ppro(Yy,-) via chain rule in two steps. We first update
I +1|Y, = (i,e) same as (26), but in the the second step we apply the deterministic update,

g if L. +1 = 7 + g,
En+1 = " (27)
—e  otherwise.

The lifted property of non-reversible PT. By inspection, we have for y,y' € {0,..., N} x
{_17 1}

Psro(y,y') = Psgo (Y, v), (28)

implying that Psgo is reversible with respect to the uniform stationary distribution. In fact, since €,
are independent and identically distributed, I, by itself is a reversible Markov process for SEO. The
index process for SEO has been analysed in this context by | |, where a master equation for I,
was heuristically assumed to hold. However this approach does not provide a good approximation
to the DEO case since, even if one assumes ELE, the process I, is not Markovian in contrast to
the index process Y,, = (I,,&,). However, contrary to the SEO case, the index process does not

satisfy the detailed balance condition (28) but the following skew-detailed balance condition,

Poro(y,y') = Poro(R(Y), R(y)), (29)

where R(i,e) = (i, —¢). This implies that the index process for DEO falls within the generalized
Metropolis-Hastings framework outlined in [ , ], and is non-reversible with respect to
the uniform distribution.

Reversibility necessitates that the constructed MCMC chain must be allowed to backtrack
its movements, which leads to inefficient exploration of the state space. As a consequence, non-
reversibility is typically a favourable property for MCMC chains. One popular approach to design
non-reversible MCMC samplers is to enlarge the state space with a “lifting parameter” which breaks
reversibility and forces persistency in exploration | , .

We can interpret the index process Y,, = (I, ¢,) for DEO communication as a “lifted” version
of the index process for SEO with lifting parameter €,. In DEO communication, I,, travels in the
direction of €, and only reverses direction when I, reaches a boundary or when a swap rejection
occurs. This idea was first explored by [ | in the context of parallel tempering.

Consequentially, this “lifted property” built into DEO trajectories explains the qualitatively
different behaviour between SEO and DEO. In Section 3.4 we will formally show that DEO an-
nealing trajectories perform round trips in O(N) PT iterations whereas SEO annealing trajectories
require instead O(N?) PT iterations. We will also show in Section 6 that the scaling behaviour of
the index process for reversible and non-reversible PT are qualitatively different, in particular for

non-reversible PT, the index process is non-diffusive in contrast to its reversible counterpart.
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3.4 Non-asymptotic domination of non-reversible PT

Based on our two assumptions, we will be able to compute explicit formulae for the round trip rates
PT with DEO and SEO communication (and hence restart rates). Using the fact that the index
process is Markovian, we can rewrite the round trip rate via an expected hitting time of I,,, and
then provide analytic expressions for the expected hitting times of index process Y,, for both DEO
and SEO communication based on its transition probabilities. This yields that non-reversible PT

outperforms reversible PT for any annealing schedule.

Computation of the round trip rate. We defined our notion of optimality 7 using an asymptotic
expression in the number of iteration n. Our first goal is to obtain an analytic and non-asymptotic
expression for 7 for a given annealing schedule P. As we will show shortly, the choice of schedule
‘P enters in the said analytic expression in terms of a schedule inefficiency defined as a sum of

rejection odds:

N
(
r

E(P) = Z 1_ (1)’ (30)

where (=19 = 1 — s(i=1) ig the probability of rejecting a swap.

To achieve our first goal, we note that for each i = 0,..., N, R’ is delayed renewal processes
with inter-arrival times T,i = Tf,k — Tf,k—l for k > 1 and ¢ = 0,...,N. In particular, T,i are
independent and identically distributed with common distribution 7. The key renewal theorem

then implies

N .
. E[RY] N+1
T ;JE& n  E[T]’ (31)
The following proposition gives us analytical expressions for the expected round trip times of PT
with SEO and DEO communication respectively in terms of the schedule inefficiency. The proof

can be found in Appendix B.

Proposition 3.1. For any annealing schedule P = {fy,...,0n},

Esgo[T] = 2(N + 1)N + 2(N + 1)E(P), (32)
Epko[T] = 2(N + 1) + 2(N + 1)E(P). (33)

The first term of (33) is the minimum number of swaps needed for a round trip to occur with
no rejections. In contrast, the first term in (32) is the expected number of steps needed for a simple
random walk on P of size N + 1 to make a round trip. The second term of (32) and (33) represents
the expected impact of rejected swaps on the round trip times.

Intuitively, E[T] can be interpreted as the expected number of scans required before the first

replica achieves a round trip. Therefore we should Proposition 3.1 implies we need O(N) scans for
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non-reversible PT before the first round trip occur. This is in contrast to the O(NN?) scans required

for reversible PT.

Corollary 3.2. For any annealing schedule P we have

N +1 1
TSEO (P) = ESEO [T] = IN + QE(P)’ (34)
oo (P) = ot ! (35)

- EDEO[T] - 2+ 2E(’P)’

so 7se0(P) < mpro(P).

4 Asymptotic analysis of PT

While the main result from the previous section ranks the performance of DEO communication
relative to SEO communication, it does not provide insight on the absolute performances of these

schemes, because of the inefficiency term E(P).

Overview. In this section, we provide asymptotic estimates of E(P) as ||P|| — 0. The main result
in this section is that the round trip rate 7sgo(P) of the reversible PT decays to zero. This in
contrast to the non-reversible PT, where mppo(P) asymptotically increases (as defined below) to a
positive constant 7. Moreover, we provide a characterization of 7 in terms of a “communication
barrier”, A, measuring the deviance of 7 from my. We show both 7 and A can be estimated from

the MCMC trace in Section 5 and can be used as the basis of schedule adaptation schemes.

4.1 The communication barrier

We begin by analyzing the behaviour of the PT swaps as ||P| goes to zero. In order to do so, we

define the swap and rejection functions s, 7 : [0,1]2 — [0, 1] respectively as,

s(8.8) = E [exp (min{0, (8 - #)(V — v )] (36)
r(B,8") =1-s(8,8), (37)

where V(8) £ V(X®) for XB) ~ 78 are independent. The quantities s(3,3’) and (3, 5') are
symmetric in their arguments and represent the probability of swapping and rejection occurring
between 8 and A’ under the ELE assumption. Note that s(—14) =1 — p(i=14) — s(Bi-1, Bi)-

Local communication barrier. To take the limit as ||P|| — 0, it will be useful to understand the
behaviour of s(8,3’) when 8 =~ ’. The key quantity that drives this asymptotic regime is given
by a function A : [0, 1] — Ry defined as

1
A(B) = §E [|V1(5) _ V2(5)|] ’ (38)
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where Vl(ﬁ ), 2('8 ) are independent random variables with common distribution V%), We will use the
following estimate for s(3,8’) derived in the context of the design of a different class of tempering

models used in the physics literature called incomplete beta function laws | ].

Theorem 4.1. |/ ] For B < f3, let B = 5%5/ and 6 = B' — 3. Suppose V3 is integrable with

respect to my and w then we have,

s(B8,8") =1 —6A(B) + O(8°), (39)
r(B,B") = 6A(B) + O(6°). (40)

Theorem 4.1 shows that A encodes up to third order the behaviour of s and r as the annealing
parameter difference between the chains goes to 0. Since r(3,3) = 0, Theorem 4.1 implies that
A(B) can be expressed equivalently as the instantaneous rate of rejection of a proposed swap at

annealing parameter 3,

)‘(6): lim r(@ﬂ—i—é)—r(ﬁ,ﬂ)

. 41
6—0t 1) ( )

Note that (3, 8') is small when 7% ~ 7(%) which combined with Theorem 4.1 and (41) implies
A(B) measures how sensitive 7(%) is to perturbation in j.

Replica with annealing trajectory B, will have very little difficulty accepting swaps when A(B),)
is small and will suffer from high rejection rates in regions when A(B,,) is large. Since chains com-

municate only when swaps are successful, A\(3) measures the difficulty of communication at £.

Global communication barrier. When 8 < 3/, §A(3) is the Riemann sum for | 65 / A(b)db with a
single rectangle. If A € C?([0,1]), then standard midpoint rule error estimates yield

d2\

P 53, (42)

12

/B " MEyab - 6A<B>‘ <1 ]

o0

Proposition 4.2 implies that the regularity of A is controlled by the moments of V' with respect to

7 and 7.
Proposition 4.2. If V¥ is integrable with respect to my and 7, then A € C*~1([0,1]).

By applying Proposition 4.2, we can substitute (42) into Theorem 4.1, to obtain the following

corollary.

Corollary 4.3. If V3 is integrable with respect to m and 7, we have

5/

s0.8) = 1= [ A0+ 0, (43)
B8
ﬁ/
r(B, ) = / AB)db + O(5°). (44)
B
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Motivated by Corollary 4.3 we will henceforth assume that V3 is integrable with respect to
and 7 and define A : [0,1] — Ry by

B
A(B) = /0 A(B)dg. (45)

We denote A = A(1) as the global communication barrier.

Remark 4.4. Notice that A > 0 with equality if and only if \(8) = 0 for all 5 € [0, 1]. It can be
easily verified from (38) that A = 0 if and only if V(%) is constant 7(%-a.s. for all 3 € [0,1] which
happens precisely when mg = w. So A defines a natural symmetric divergence and measures the

difficulty of communication between 7y and .

High-dimensional scaling of communication barrier. We now determine the asymptotic
behaviour of A and A when the dimension of X is large. To make the analysis tractable, we
assume that m4(z) = H?:l m(x;) as in | , ]. This provides a model for weakly dependent
high-dimensional distributions.

The corresponding tempered distributions are thus given by
d d
ﬁc(lﬁ)(:n) = H B)(z) o exp ( BZV x;) Z (J;z)) : (46)
=1 =1

Let Ay and A4 be the local and global communication barriers for 74 respectively. It follows from

Proposition 4.5 that Ay and A, increase at a rate of O(d"/?) as d — oc.

Proposition 4.5 (High Dimensional Scaling). Define 0%(8) = Var(V®), then for all 8 € [0,1],

we have as d — oo,

Aa(B) ~ [ =o(B) (47)

A~ \/z /0 o(8)d8. (48)

Remark 4.6. We emphasize that we make only this structural assumption on the state space and

and,

distribution for Proposition 4.5. All the other results presented in this work are agnostic to the

structure of the X and 7.

4.2 Asymptotic analysis of round trip rate

Suppose Py is a sequence of annealing schedules of size N 41 such that Py C Py+1. By Corollary
3.2 we can asymptotically characterize the behaviour of the round trip rate as ||Py|| — 0 through
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the schedule inefficiency E(Py).

Asymptotic increasing sequence. In this section we will use the following two definitions: first,

we write a, < b, as n — oo if and only if there is ¢, such that a, < ¢, and ¢, ~ b, as n — oc.

~

Second, we say a,, is asymptotically decreasing (respectively asymptotically increasing) if ap+1 < ap

(respectively a, < apy1).

Proposition 4.7. If |Pn|| — 0, then E(Px) asymptotically decreases to A at a rate of O(||Pn||).
A consequence of Proposition 4.7 and Corollary 3.2, we obtain the following key result.

Corollary 4.8. Suppose |Py|| = 0 as N — oo.

(a) The round trip rate Tspo goes to zero:

1
~— —0. 49
7sE0(PN) ~ 5 (49)
(b) The round trip rate Tppo asymptotically increases at a O(||Pn||) rate to the following upper

bound:

1
24 2A

TpEO(PN) — T = > 0. (50)

By Remark 4.4, A is large when 7y deviates significantly from 7, therefore we expect a higher
round trip rate when the prior is chosen to be a good approximation to the target. Since A is
problem specific, this identifies a limitation of PT present even in its non-reversible flavour, namely
that adding more cores to the task will never be harmful, but does have a diminishing return. The
bound 7 = (2+42A)~! could be very small for complex problems. Moreover, it is independent of the
choice of annealing schedule, hence this bound cannot be improved by the algorithmic optimizations
described in Section 5. Thankfully, the more classical asymptotic perspective in Proposition 4.5
shows that A is expected to grow as the square root rate of the dimensionality d in a certain special
cases where the state space is a product space, X%. Hence we expect that weakly dependent high

dimensional problems will have a moderate A and 7 is expected to decrease at a O(d~1/?) rate.

5 Tuning non-reversible PT algorithms

Context. So far, in addition to showing the superiority of the non-reversible communication
scheme DEO, we have established that in the massively parallel regime, non-reversible PT will
benefit from utilizing at least as many cores as available. Moreover, by Equation (50), asymptot-
ically, the choice of annealing schedule P does not matter as long as its mesh size goes to zero.
However, given a finite number of available cores, there are still gains to be made by optimizing the

annealing schedule. In this section, we introduce a novel approach to this optimization problem,
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which relies on the communication barrier \.

Section overview. We first show that, under reasonable assumptions, the optimal annealing
schedule maximizing the round trip rate is obtained by having a constant rejection rate be-
tween chains. This “equi-acceptance” result is not surprising given that other theoretical frame-
works and notions of efficiency also obtained recommendations involving equal acceptance rate
between chains | , , , , ]. However implementing this equi-
acceptance recommendation in practice is non-trivial. Previous work relied on Robbins-Monro
schemes [ , |, which introduce several tuning parameters. Our second result in this
section is an easy to implement scheme to achieve equi-acceptance, based on the communication
barrier A\. The third result in this section is to show that this function X : [0,1] — R can be easily
estimated from the MCMC output, hence creating an end-to-end method for non-reversible PT

tuning.

Relation to previous work. We reiterate an important difference in the non-reversible PT tuning
process compared to previous work. In the existing literature, focusing on reversible and/or serial
computation, deciding the number of chains N was done as part of the tuning process. Here, in the
context of difficult sampling problem we instead assume that the number of chains is taken to be as
large as possible and hence determined by the characteristics of a massively parallel architecture.

Given this N, we build an equi-acceptance annealing schedule.

5.1 Optimal round trip rate

In this section we show that for a fixed large number of chains N > A, having equal swap acceptance

probabilities maximizes the following optimization program over annealing schedules P:

maximize: Tpro(P
(P) (51)
subject to: |P| =N + 1.

To approach this optimization, we first use Corollary 3.2 to rewrite the maximization of the round
trip rate 7ppo(P) into a minimization of the schedule inefficiency, E(P). Recall that E(P) is
defined in Equation (30) as the sum of rejection odds (=14 /(1 — r(=1%)) over the pair of chains
(i—1,17). Hence, we can rewrite the optimization objective in terms of the variables r; = ri=Li) Tg
get a tractable approximate characterization of the feasible region of r1, 79, ..., rxn, we use Corollary
4.3, which implies that for all schedules P we have for r; = r(8;—1, 5:),

N
d ri=A+O(N|P[?). (52)

i=1

21



Therefore assuming [|P|| is small enough to ignore the error term in (52), finding Poptimal is ap-

proximately equivalent to solving the following optimization problem:

N

e . T
minimize: E
— 11—
=1

N
53
subject to: g r, = A, (53)
i=1

’I“ZZO

This can be solved using Lagrange multipliers and leads to a solution where r; is constant in 7. We

denote this constant by r*.

5.2 Optimal annealing schedule

The previous section established that for a fixed N > A, we should target an equi-acceptance
annealing schedule. However, algorithmically we need to perform the optimization over the actual
annealing parameters 3; in order to be able to run the PT simulation. Assuming we know A for
now (and we show how to estimate it in the next section), the idea is that to obtain the optimal
schedule Poptimal = {55, - - - S}, we partition the interval [0, 1] such that the area under the curve

A between successive 37 and 3/, is constant and equal to 7*.

Computing f; from communication barrier. To formalize this intuition, recall that for the

optimal schedule Poptimal Of size N + 1, we have r; = r* for all ¢ which by (52) satisfies,

* A 3
=5 T OUPI). (54)

By Corollary 4.3 we have for all i =0,..., N,

B;
= [ Ne)as -+ OPIP) (55)
Bi
If we equate (54) and (55) while ignoring the O(||P||?) error terms and sum from i = 0,...,k we
get,
A ~ Ay (56)

The problem of numerically solving Equation (56) for g; is similar to that of finding the k/N
quantiles corresponding to a random variable with CDF Fy(8) = A(8)/A. This suggests we want
to pick Poptimal With density proportional to A.
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5.3 Estimation of the communication barrier

Computing A(S) or A(B) exactly via (38) is in general intractable. In this section, we present a

simple Monte Carlo approximation.

Setup: assume we have access to a collection of samples, X1, Xo,...,X,, coming from a non-
reversible PT scheme based on an arbitrary annealing schedule Py of size N + 1 (see Procedure
1). These samples may come from a short pilot run, or, as described in the next section, from the

previous iteration of an adaptive scheme.

Estimation of optimal round trip rate 7. Let §; € P. Under ELE, we have the follow-

ing Monte Carlo estimates for the rejection rates:
1 n
7;(1'—1,1’) _ - Za(i—l,i) (Xk) _ T(i—l,i) + Op(n_l/Z). (57)
n
k=1

Next, we apply ¢ times Corollary 4.3 on the pairs (Bo, 51), (51, 52),-- -, (Bi—1, 5i) and sum Equa-
tion (44), obtaining:

7 7

L Bj .
1 A1) _ Z <//3 1 A(b)db + O(HP!“) = A(Bi) + O(N||P[). (58)

j: ]:1 Jj—

This motivates the following approximation for A(S;),
i

Mgy =2 =17, (59)

j=1
which assuming ELE has an error of O,(y/N/n + N|P||*). In particular, we also arrive at a
consistent estimator 7 for the optimal round trip rate 7,

1
24+ 2A°

T = (60)
where A = A(l) In particular 7 allows us to diagnose if a low round trip is due to design choices
for PT, or due to m, mg itself. We can compare the empirically observed round trip rate against 7

to determine how far our implementation deviates from optimal performance.

Estimation of A(f) and \(3) via interpolation. Given the estimates A(fy), ..., A(Sn) obtained
above, we estimate the function A(/) via interpolation, with the constraint that the interpolated
function should be monotone increasing (since A\(3) > 0). Specifically, we use the Fritsch-Carlson
monotone cubic spline method [ ]. We denote the monotone interpolation by A(8). More

sophisticated interpolation methods could be used, for example method taking the Monte Carlo
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standard error into account.
While we only use A(8) in our adaptation procedure, it is still useful to estimate \((3) for
N (B),

visualization purpose. We do this by taking the derivative of our interpolation, X(ﬁ) =

which is just a piecewise quadratic function.

5.4 Adaptive algorithm

Updating. The ideas described in this section so far are summarized in Procedure 2, which given

rejection statistics collected for a schedule provide an updated schedule.

Procedure 2 UpdateSchedule(swap rejection estimates {#(~19}, previous schedule P)

for kin1,2,....N —1do
Find B} such that A(8;) = A% using e.g. bisection.

return P* = (0,6,55,....68v_1,1)

1: N « |73| —1

2: For each 3; € P, compute A(B,) ) > Equation (59)
3: 5« {(Bo, A(Bo)), (Br, A(Br)), - (Bn, A(BN))}

4: Compute a monotone increasing interpolation A(-) of the points S > e.g. using | ]
5: A < A(l)

6:

T

8:

Adapting. Next, we push this idea a bit further in Procedure 3, which iteratively refines the
annealing schedule. By construction, the procedure guarantees that the second half of the samples
of the chain at 8 = 1 provide a consistent estimate of expectations under = (PT algorithms are
ergodic under much weaker conditions, such as ergodicity of the exploration kernels). We show in
Figure 3 a visualization of the execution of the adaptive algorithm, Procedure 3, on a real dataset.
Procedure 3 is qualitatively very different from existing adaptive PT algorithms such as | ,

, ]. We do not suggest a continuous state-dependent adaptation, instead, we recom-

mend using only the second half of the samples produced by Procedure 3, which by construction
follow an homogeneous chain. This allows us to circumvent the hurdles that arise in practice when
doing continuous adaptation. Procedure 3 experimentally out-performs existing adaptive methods

in terms of round trip rates and effective sample size per second, as discussed in Section 7.3.

Procedure 3 Non-reversible PT with adaptation

1: N + 1 < number of cores available

2: P < initial annealing schedule of size N + 1 (e.g. uniform)

3 <2

4: for round in 1, 2, ..., number of rounds requested do

5: {#=1)} < DEO(n, P) > Procedure 1
6: P «UpdateSchedule({#(i=1)}, P) > Procedure 2
7 n < 2n > Rounds use an exponentially increasing number of scans
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Figure 3: Visualization of our adaptive non-reversible PT algorithm ran on a hierarchical Bayesian model
applied to the historical failure rates of 5667 launches for 367 types of rockets with. This was done with
N = 30 chains and 11 adaptive rounds, the last one consisting of 5000 scans, the penultimate of 2500,
etc. and estimated A = 12.03. (a) Progression of the adaptive annealing schedule (colours index parallel
chains, y-axis, the values S for each adaptation round, in log scale). (b) Progression of the average empirical
rejection rates {#("1I}N  with their sample standard deviation. Notice the average is fairly consistent,
but as the adaptive rounds increase, the rejection rates converge to the average as desired. (c¢) Progression
of the estimated A(8) evolution with adaption rounds.

6 Scaling limit of annealing trajectories

Suppose Y;, is the index process for annealing schedule Py of size N + 1 and meshsize |Py/|| taking
values in {0,...,N} x {—1,1}. Figure 4 suggests that Y;, behaves qualitatively different as N
increases for both reversible and non-reversible PT. The goal of this section is investigate these
differences and classify the scaling limits for the index process. We will show that such limits exist
under the stationary and ELE assumptions specified in Section 3.3. As ||Py|| — 0, we will show for
reversible PT, the index process weakly converges to a diffusion independent of 7, 7y and sequence
of schedules Py. In contrast, the index process for non-reversible PT does not have a diffusive limit
(contrary to [LDMT09]) but rather scales to a Piecewise Deterministic Markov Process (PDMP)

controlled by A, and the choice of the annealing schedule.

Schedule generating function. Suppose G € C!([0,1]) is an increasing function satisfying
G(0) = 0 and G(1) = 1. We say that G is a schedule generator for P = {fo,...,On} if P =

G (Puniform)a or equivalently
)

We will now assume without loss of generality that the sequence of schedules Py are generated
by some common G. In particular the mean value theorem implies ||Py| = O(N~!) as N — co.
This is not as strict of a requirement as it seems since most annealing schedules commonly used

fall within this framework:
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e The uniform schedule Pypitorm = {0,1/N, ..., 1} is generated by G(w) = w.

e The optimal schedule Poptimal = {55, ..., Bx} derived in Section 5.2 is generated by G(w) =
F Y (w), where Fy(8) = A(B)/A.

e If mo(x) oc w(x)” for some v € (0,1), and L(x) oc w(z)!~7 then some simple algebraic manip-

ulation shows that G(w) = o corresponds to the geometric schedule commonly used by

I—y
practitioners.
6.1 Scaled index process
To establish scaling limit for Y,, = (I,,&,) it will be convenient to work in a continuous time

setting. To do this, we suppose the times that PT iterations occur according to a Poisson process
{M(-)} with mean py. The number of PT iterations that occur by time t > 0, satisfies M (¢) ~
Poisson(uxt). We define the scaled index process by ZN(t) = (WN(t),eN(t)) where WN(t) =
Iy /N and eV (t) = ep1). For convenience, we will denote 3, = G(w) and use z = (w,e) €
[0,1] x {—1,1} to be a scaled indez.

The process ZV takes values on the discrete set Puniform X {—1,1} and is only well-defined
when ZN (0) = 20 € Puniform X {—1,1}. To establish convergence it is useful to extend it to a
process ZY which can be initialized at any z € [0,1] x {—1,1}. Suppose Z¥(0) = 29 € [0,1] x
{=1,1}, and T3, T5, ... are the iteration times generated by the Poisson process M. We construct
ZN(t) as follows: define ZV(t) = z, for t € [T},, T,+1) and update 2,.1|z, via a transition kernel
which depends on the communication scheme. We determine this transition kernel mirroring the
construction from Section 3.4.

Before we do this it will be useful to define the backward and forward shift operators ®% @f :
[0,1] — [0,1] by,

N w)y=4"" v welyl (62)
- %—w w e [0,%),
and similarly,
&Y (w) = w+ we [0,1- %], (63)
1-(-(1-w) we (1-4,1].

Intuitively ®2 (w) represents the location in [0,1] after w moves a distance + in the direction of ¢

with a reflection at 0 and 1.

Scaled index process for reversible PT: Under the SEO communication scheme, if z, =

(Wn,€n) € Puniform X {—1,1}, then we have w1 = CD?L (wy,) if a swap successfully occurred and
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Figure 4: Panels (a)-(d) compare sample trajectories of the index process for a Gaussian model with A =5
and Pqptimal for both reversible and non-reversible PT. We compare the trajectories over a period of n = 100NV
scans. When N = 5,10, 30,100 there are 1,3,2,0 total number of round trips respectively made by the the
reversible trajectories. The non-reversible trajectories make in contrast 4,6,8,9 round trips in the same
number of iterations. These simulations are in agreement with the theoretical result in Equation (50): the
estimate 7 = (24 2A)~! derived from Section 5.3 suggests we should expect on average of 1007 ~ 8.33 round
trips when N is large for non-reversible PT.
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Wnt1 = wy, otherwise. In both cases, £,41 ~ Unif{—1,+1}. Since ®X (w) is not only well-defined
for w € Pyniform but for w € [0, 1], we naturally extend this construction to any w € [0, 1].

Formally, we generate (wp1,&n+1) in two steps. In the first step we simulate,

@?L (w,)  with probability s(B.,,, By (wn))>

Wp1 | Wy En ~ (64)

W, otherwise.

In the second step we simulate €,11 ~ Unif{—1,+1}. This defines a continuous time Markov pure
jump process WY € D(R,,[0,1])? with jumps occurring according to an exponential of rate uy

and is well defined when initialized at any state wp € [0, 1].

Scaled index process for Non-reversible PT: Before defining the transition kernel for the
scaled index process under DEO communication, it will be convenient to define the propagation
function ®V : [0,1] x {~1,1} — [0,1] x {—1,1} for z = (w,e),

(@ (w),e)  if N (w) =w+ 5,

V() ={"° (65)
(@Y (w), —e)  otherwise,
and similarly the rejection function R : [0,1] x {—1,1} — [0,1] x {—1,1},
R(z) = (w, —¢). (66)

Under the DEO scheme, if 2, = (wn, €n) € Puniform X {—1, 1}, then we have z,,1 = ®"(z,) when
a swap successfully occurs and z,11 = R(z,) otherwise. Since ®V(2) and R(z) are well-defined for
all of z € [0,1] x {—1, 1}, we naturally extend this construction to any z € [0,1] x {—1,1}.

Formally, we generate z,4; according to the transition kernel,

®N(z,) with probability $(Buwn s BoN (wn))s (67)

Zn+1 ‘ Zp
R(zy) otherwise.

This defines a continuous time Markov pure jump process ZV € D(R,[0,1] x {—1,1}) with jumps
occurring according to an exponential of rate puy which is well defined when initialized at any
20 € [0, 1] X {—1, 1}.

6.2 Scaling limit of scaled index process

We will now characterize the generators of WV and ZV and identify their scaling limits as N is

taken to infinity by establishing of their infinitesimal generators.

2Given a metric space (S,d), we define C(R4,S) and D(R4,S) to be set of functions f : Ry — S that are
continuous and cadlag respectively.
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Figure 5: Sample trajectory of W.

Scaling limit for Reversible PT: By Proposition 17.2 in [[<al97] the infinitesimal generator for

WHN with SEO communication is

Lonfw) =55 37 (F@ (W) = F(w)) s(Bu o). (68)

ee{—+}

where the domain D(Ly,~) is given by the set of functions such that Ly~ f is continuous. Since
&Y, ®N are continuous, we have D(Lyyn) = C([0,1]).
Define W € C(R4, [0, 1]) to be the diffusion on [0, 1] with generator

1 d%f

= S du? (69)

Ly f(w)

where the domain D(Ly) consisting of f € C?(]0,1]) such that f/(0) = f'(1) = 0. W is a Brownian
motion on [0, 1] with reflective boundary conditions admitting the uniform distribution Unif([0, 1])

as stationary distribution.

Theorem 6.1. Suppose pun = N? and WN(0) converges weakly to W(0), then W converges
weakly to W in D(R4, [0, 1]).

Theorem 6.1 tells us that for a index process for reversible PT scales to a Brownian motion on
[0, 1] with reflecting boundary conditions if we speed the scans by factor for O(N?). Note that this

limit W is independent of 7, ™ and partition generator G.

Scaling limit for non-reversible PT: Analogously to the reversible case, under DEO commu-

nication, the infinitesimal generator for ZV is

Lyn f(2) = pn (F(@N(2)) = £(2)) $(Bus Bay () + bn (F(R(2)) = f(2)) r(Bus Bev (), (70)
where z = (w,e) and D(Lyn~) is given by the set of functions f such that L~ f is continuous.

Since " has discontinuities at (+4;, —1) and (1 — -, 1), we can verify that f € D(Ly~) if and only
if f(wo, —1) = f(wo, 1) for wy € 0, 1.
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Define Z € C(R4,[0,1] x {—1,1}) to be the PDMP on [0, 1] x {—1,1} with generator

Lzf(z) = 6%(2) + A(Buw)G'(w) (f(R(2)) — £(2)), (71)

where f € D(Ly) is the set of functions f € C1([0,1] x {—1,1}) such that f(wo,—1) = f(wp,1)
and %(wo, -1) = —%(wo, 1) for wo € {0, 1}. Intuitively we have Z(t) = (W(t),e(t)) is a PDMP
on [0,1] x {—1,1} where W(¢) moves in [0, 1] with velocity e(¢). The sign of £(t) is reversed at
rate A(By(y))G'(W(t)) or when one hits a boundary; see [BBCD ™ 18] for a discussion of PDMP on
restricted domains.

Note that when G = Goptimal = Fy * we have \(B,)G'(w) = A for all w € [0,1]. So for the
optimal schedule, e(t) changes direction at constant rate A. Figure 6 shows sample trajectories for
various values of A. When A is small, there are little to no changes in (¢) in contrast to when A

is large.

1.00 A
0.754
3 0.50
0.25

0.00

1.00 1
0.75 4
3 0.50
0.254

0.00

1.00 1
0.75
3 0.50
0.25

0.00

0 5 10 15 20
t
(c) A=10

Figure 6: (a)-(c) shows sample trajectories of W (t) where Z(t) = (W (t),e(t)) under an optimal schedule
generated by Goptimal With A = 0.1, 1, 10 respectively.

Theorem 6.2. Suppose uy = N and ZV(0) converges weakly to Z(0), then ZN converges weakly
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to Z in D(R4,[0,1] x {—1,1}). Moreover, the stationary distribution of Z is Unif([0, 1] x {—1,1}).

Theorem 6.2 shows that the scaling limit corresponding to the non-reversible index process is
not a diffusion. Unlike reversible PT, the scaling limit depends on both the model through A and
on the schedule through G.

7 Experiments

We organize this section into three subsections. In the first subsection, we check the predictions
made by our theory on simple models, selected so that analytical calculations are possible while
still capturing aspects of more interesting models (hence these are “models of models,” or meta-
models). In the second subsection, we look at the effect of violating the ELE assumption. Finally,

we compare the performance of our non-reversible scheme with other parallel tempering methods.

Reproducibility. To make our adaptive non-reversible method easy to use we implemented it
as an inference engine in the open source probabilistic programming language (PPL) Blang https:
//github.com/UBC-Stat-ML/blangSDK. A full description of the models used in the paper are
available at https://github.com/UBC-Stat-ML/blangDemos, see in particular https://github.
com/UBC-Stat-ML/blangDemos/blob/master/src/main/resources/demos/models.csv for a list
of command line options and data paths used for each model. All methods use the same exploration
kernels, namely slice sampling with exponential doubling followed by shrinking | |. Scripts
documenting replication of our experiments are available at https://github.com/UBC-Stat-ML/

ptbenchmark.

Multi-core implementation. We use lightweight threads | | to parallelize both the ex-
ploration and communication phases, as shown in Procedure 1. We use the algorithm of | ] as
implemented in [ | to allow each PT chain to have its own random stream. This technique avoids
any blocking across threads and hence makes the inner loop of our algorithm truly embarrassingly
parallel in N. Moreover, the method of | | combined with the fact that we fix random seeds
means that the numerical value output by the algorithm is not affected by the number of threads
used. Increasing the number of threads simply makes the algorithm run faster. In all experiments
unless noted otherwise we use the maximum numbers of threads available in the host machine, by
default an Intel i5 2.7 GHz (which supports 8 threads via hyper-threading) except for Section 7.3
where we use an Amazon EC2 instance of type c4.8xlarge, which is backed by a 2.9 GHz Intel
Xeon E5-2666 v3 Processor (20 threads).

7.1 Tractable meta-models

Example 7.1 (Discrete multi-modal problem). Consider a discrete state space X = {0,...,2k},
and let 1gyen : © — {0,1} denote the indicator function for even numbers. Define m(z) oc a'Bven(®)
for a > 1 and mp(z) o< 1 with V(z) = —1gyen(7) loga. The distribution 7 has k + 1 modes located
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where x is even with low probability “barriers” located at x odd. The parameter a controls the

relative mass put on the modes. Therefore we have

ﬁlEvcn(z)
B gy =¥ 79
() = ,

Z(5) "
where Z(B8) = k + (k+1)a®. A simple computation using (38) shows that the local communication
barrier is,

AB) = E(k +1)a’loga a’loga (73)
(k+ (k+1)af)? koo (1+aP)2
By integrating we obtain the global communication barrier between 7 and 7,
k(k+1)(a—1 -1
A kD@D a -

2k +1)(k+ (k+ 1)a) k—oo 2(a+1)"

It can be seen that for all @ > 1, A(8) is decreasing in ( as seen in Figure 7 and A is increasing in
a and k. Therefore, one should expect to see an increase in the intensity of rejection as the relative

modes of m become more “peaked” and when the number of modes increases.

0.5+
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Figure 7: (a) The local communication barrier for k¥ = 5 and various values of a. (b) The global communi-
cation barrier as a function of a for various k. In (a) the solid line is the approximation A(8) (respectively A
in (b)), resulting from Procedure 3 (N = 20, n = 10000 scans) and the dotted line is the analytic expression
in (73) ( respectively, (74)).

Example 7.2 (Gaussian). Suppose m ~ N (0,71 ), and 7 ~ N(0,7, 'Ty) with 79 < 7. It can
be shown that 7(%) ~ N(O,Tglﬂd) where 73 = (1 — )79 + B7. Theorem 1 in [PPC04] implies the

following closed form expression for A in the Gaussian case:

2l-d(r — 7
SR T

272

) (75)
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where B(a,b) is the Beta function. Moreover, for 5 < ' the swap function satisfies
S(,B B/) =2Fq 4 L (76)
’ 22 \f+p5 )’

where Fj () is the CDF of a beta distribution with shape parameters a,b. By integrating A we

get the global communication barrier is,

AB) = l_d) log (Tﬁ> . (77)

As d — oo, we have

A g <T> , (78)

70

which is consistent with Proposition 4.5. We see from Figure 8 that the empirical approximation
of A\, A from Procedure 3 are consistent with (75),(77).
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Figure 8: Analysis of the Gaussian model where 79 = 1 for various d, 7. (a) The local communication barrier
for d = 8 and various values of 7. (b) The global communication barrier as a function of d for various 7. In

(a) the solid line is the approximation A(3) (respectively A in (b)), resulting from Procedure 3 (N = 60 and
n = 10000 scans) and the dotted line is the analytic expression in (75) (respectively, (77)).

To determine the optimal annealing schedule Poptimal = {55, - - - » B }» we substituting (77) into
in A(Bf) = A% and solve for 3;; as discuss in Section 5.2. This implies the optimal schedule satisfies,

Z|=

-
T8 = T, (7_0) . (79)
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Figure 9: (a) Figures (a) and (b) show the round trip rate of a Gaussian model with A =2 and A =5 as a
function of N. We compare the round trip rates with a uniform schedule (dashed) to the optimal schedule
(solid) for both DEO (blue) and REO (red). The dotted horizontal line represents 7.

By substituting in 75 = 70 + 8;(7 — 70), we get 8 = G(ﬁ) where,

1—
@)™ -2

This is the same spacing obtained (based on a different theoretical approach) in | | and
[ ] for the Gaussian model (with a small notation change). As described in the next section,

in general it is not possible to get analytical expressions for optimal schedules, in which case we
resort to Procedure 3. Moreover, we remind the reader that non-reversible allow for annealing
schedules containing more chains compared to reversible methods.

Figure 9 compares the theoretical round trip rate for the Gaussian model using the uniform and
optimal schedule, this was computed by using Corollory 3.2 and substituting in the exact rejection
rates computed from (76). Notice that, for both reversible and non-reversible PT, the optimal
schedule produces significantly better round trip rates as expected. In particular when A = 5, it
takes nearly N = 10° number of parallel chains with the uniform schedule to achieve the same
round trip rate using an optimal schedule with N = 10. Although Corollary 4.8 implies that by
increasing N, the round trip rate converges to the optimal round trip rate, this example shows that

for even a large, but finite N, a poor schedule can result in very poor performance.

Example 7.3 (Ising model). We now compute numerically A for the two dimensional Ising model
on a 2-dimensional lattice of size M x M with magnetic moment p. Using the notation x; ~ x;

to indicate sites are nearest neighbours on the lattice, the target distribution is annealed by the
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Figure 10: (a) Monte Carlo estimate of the local communication barrier for the Ising model with p = 0
and M = 5,10, 20, 30 using 5000 scans and N = 100. The vertical line is at the critical 5. where the phase
transition occurs. (b) The global communication barrier for Ising model as a function of M.

inverse temperature § and the tempered distributions are given by

78 (z) = Z(lﬁ) exp | 8 Z Ti%j —i—uin . (81)

Ti~T 7

This is an M? dimensional model which undergoes a phase transition as M — oo at some critical
temperature 3.. When p = 0 it is known that 8. = log(1 +v/2)/2 | |. Figure 10 shows the
rejection intensity for the Ising model with © = 0 for M = 5, 10, 20, 30.

We observe that A exhibits very different characteristics in this scenario compared to the discrete
multimodal and Gaussian models: it is not monotonic and is maximum at the phase transition.
We also note that A increases roughly linearly with respect to M. Given Proposition 4.5, this is to
be expected even if this proposition is not directly applicable here as the target distribution does
not factorize.

We also approximate the optimal annealing schedule for a M x M Ising model in Figure 11.
Notice how the optimal annealing schedule are denser in regions where A is high such as the phase
transition. When NV is small, Poptimal results in a substantially better round trip rate than Pyniform,
but when N is large, the round trip rate for both schedules asymptotically increase towards 7. This

is consistent with Corollary 4.8.

7.2 Effects of ELE violation

As discussed in Section 3.3, we do not expect ELE to hold exactly: the likelihoods before and

after an exploration step are not independent in practice. Increasing the number ney, of MCMC
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Figure 11: (a) We plot the distribution A(8)/A and optimal annealing schedule for the Ising model with
M =20, A = 13.33 N = 30 intervals. The vertical line indicates the phase transition. (b) The round trip
rates for the Ising model with 4 = 0 and M = 20 with a uniform schedule (dashed) to the optimal schedule
(solid) for both DEO (blue) and REO (red). The dotted horizontal line represents the approximation of the
optimal round trip rate 7.

exploration steps taken between two communication steps (see Procedure 1) can be used to approach
ELE. However a priori one may be concerned that ney, would have to be very large to do so.

To investigate this question, we run the non-reversible method with different values for neyp1. Let
dvar denote the number of variables in the model. We run experiments with nexp = 0, (1/2)dyar,
dyar, 2dvar, 4dvar, ..., 32dyay. The fractions 0,1/2,1,2,... involved in this construction can be
interpreted as the expected number of times an individual variable is updated in an exploration
phase, i.e. the expected updates per exploration phase. The only exception is for the prior chain
(8 = 0), we always use nepl = 1 since we can get exact samples from the prior distributions
considered in our experiments. The case nexp = 0 technically still yields an ergodic chain since the
communication chain will ensure all chains visit the prior chain.

For each value of neyp considered we ran 10 times the non-reversible PT scheme with different
random seeds (a total of 80 runs). Each run uses 10000 scans, where one scan consists in 7expl
exploration iterations followed by one communication iteration. The 10000 scans are organized into
12 adaptation rounds, where the last round contains 5000 scans, the penultimate, 2 500, etc. The
first round uses a uniformly-spaced annealing schedule, and the subsequent rounds approximate the
optimal annealing schedule computed using the estimate of A from the previous round. For each
round and configuration, we report three quantities: (a) the estimated upper bound 7 as introduced
in Section 4.2, (b) the actual restart rate, directly measured from the empirical replica trajectories,
and (c) the estimated function A. The estimation method for 7 is described in Section 5.

We show in Figure 12 the three quantities (a,b,c) described above for the Ising model. The

results show that our key results are highly resilient to large violations of the ELE assumption.
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Figure 12: Results on the super-critical Ising model (M = 5), varying the number of expected updates per
exploration phase (for = 0, the prior chain always uses exactly one exact sample). We used N = 16
and estimated A = 3.08. (a) The estimated upper bound 7 from Procedure 3. (b) The round trip rate
directly measured from the empirical replica trajectories. The dotted line represents the estimated of 7. (c)
An estimate of the local communication barrier A\(8). Whenever necp, > 0, the adaptive scheme accurately
learns 7, A.

First, for all neyp > 0 considered, the estimated local communication barrier A and therefore the
global one A are in very close agreement and are estimated with roughly the same number of
adaptation rounds. Second, for all necp, > 0, the actual restart rate is indeed bounded by the
estimated value 7. The only exception is the setting neyp = 0, where the estimated A is markedly
off compared to the other ones.

We provided in Section 3.3 one motivating example for ELE based on symmetric multi-modal
problems. To investigate if breaking these symmetries will induce more severe consequences for
violating ELE, we next look at the Ising model under the effect of a magnetic field. We set the
magnetic moment u = 0.1, leading to a target distribution where all marginals assign a mass of
less than 0.07 to x; = 1. We show the results in Figure 13. Even in this asymmetric multi-modal
problem, we observe the same resilience to violations of ELE. We obtain in Figure 14 similar results
for a Bayesian hierarchical model applied to a real dataset.

We conjecture that this resilience may come from the structure of typical neighbourhoods of non-
reversible parallel tempering. Our intuition can be described using a point process defined as follows.
The point process places the rejected swaps in a two-dimensional space, where one axis indexes PT
communication iterations, and the other axis consists in the parallel chains. In the regime of a large
number of parallel chains, for a given location in this point process, a neighbourhood will contain
either zero or one rejection event. The key observation is that in both cases, no two chains interact
more than once. This is true by inspection of Figure 15. As a consequence, even when a small
number of exploration steps are used between swaps, with high probability they will accumulate
by the time a pair of chains meet again.

Note that the same is not true for reversible PT, where the typical local neighbourhood can
contain an arbitrary large number of events, and hence pairs of chain can interact more than once

in the neighbourhood. As a consequence, we conjecture that for our non-reversible results, it may
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Figure 14: Same quantities as in Figure 12, but with a hierarchical Bayesian model (A = 12.03) applied to
the historical failure rates of 5667 launches for 367 types of rockets.

be possible to significantly weaken the ELE assumption, but not for reversible PT. We leave the
theoretical investigation of this question for future work.

To provide some empirical justification to this conjecture, we performed another experiment on
the magnetic Ising model, fixing the expected updates per exploration phase to 1/2 and increasing
the number of chains instead. The results are shown in Figure 16 and support that by increasing
the number of parallel chains, the actual tempered restart rate still converges to the theoretical

bound from below even in the face of severe ELE violation.

7.3 Comparison with other parallel tempering schemes

In this section, we present results to support that the increased round trip rates enjoyed by our
method does indeed translate into increased effective sample size per compute time. The following
experiment also benchmarks the empirical running time of our adaptive procedure compared to

; -

previous adaptive PT methods |

38



AN

"W

0006
i

Figure 15: Typical neighbourhoods of non-reversible parallel tempering in the regime of a large number of
parallel chains. There are either no rejection events (a), or one rejection event (b). In both cases, no two
chains interact more than once.

Benchmarked methods. The methods we considered are: (1) the stochastic optimization adap-
tive method for reversible schemes proposed in [ARR11]; (2), a second stochastic optimization
scheme, which still selects the optimal number of chains using the 23% rule but uses an improved
update scheme from [MMV13]; (3) our adaptive non reversible PT scheme; (4) our scheme, com-
bined with a better initialization based on a preliminary execution of a sequential Monte Carlo
algorithm [DMDJO06], we use this to investigate the effect on the violation of the stationarity as-
sumption, and for fairness, we use this sophisticated initialization method for all the methods
except (3); and finally, (5), as a baseline, a single-chain MCMC run. All baseline methods are im-
plemented in Blang (https://github.com/UBC-Stat-ML/blangSDK), the same probabilistic pro-
gramming language as used to implement our method. The code for the baseline adaption methods
are available at https://github.com/UBC-Stat-ML/blangDemos. All methods therefore run on

the Java Virtual Machine, so their wall clock running times are all comparable.

Stochastic optimization methods. Both [ARR11] and [MNMV13] are based on reversible PT
together with two different flavours of stochastic optimization to adaptively select the annealing
schedule. In [ARR11], the chains are added one by one, each chain targeting a swap acceptance rate
of 23% from the previous one. In [MMV13], the authors modify the scheme in two ways: first, they
optimize all annealing parameters simultaneously, and second, they propose a different update for
performing the stochastic optimization. To optimize all chains simultaneously, the authors assume
that both the number of chains and the equi-acceptance probability are specified. Since this infor-
mation is not provided to the other methods, in order to perform a fair comparison, for the method
we label as “Miasojedow, Moulines, Vihola” we implemented a method which adds the chain one
at the time while targeting the swap acceptance rate of 23% but based on the improved stochastic
optimization update of [MMNV13]. Specifically, both [ARR 1] and [MMV13] rely on updates of the
form pp4+1 = pn+Yn(an+1 —0.23) where 7, is an update schedule and p,, is a re-parameterization of

difference in annealing parameter from the previous chain 8 to the one being added 3’. The work
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Figure 16: Effect of increasing the number of parallel chains for an example where ELE is severely violated
(only half the variables are updated at each exploration step). (a) Estimated upper bound 7.(b) Actual restart
rate, directly measured from the empirical replica trajectories. Notice that the number of scans required for
the round trip rates to in stabilize increases with N as predicted by Proposition 3.1 but eventually attains
a higher round round trip.

of | ] uses the update 3, = B(1 + exp(p,))~!, whereas the work of | | specifies the
explicit parameterization used for p, namely p = log(8'~! — ~1), from which the update becomes
B = B(1 + Bexp(p,))~t. Moreover, while [ Juse v, = (n+1)71, | ] suggest to use
Yn = (n+1)7%6. We found that the latter set of choice was more stable. For example, in the
next numerical example, the former failed to converge in 100000 iterations while we encountered

no convergence problems with the other methods.

Experimental setup. We ran all methods on a Bayesian mixture model. These experiments
are performed on an EC2 instance of type c4.8xlarge, which uses a 2.9 GHz Intel Xeon E5-2666
v3 Processor. Since this type of CPU supports 20 threads, we set the number of chains to 16, keep-
ing a slight buffer for garbage collection and background system tasks. With that number of chains,
we obtain an average swap rejection rate of 46%, well above the reversible recommendations in the
23 —40% range. All methods used 10000 scans, where a scan uses Nexpl = 3dyar €xploration rounds.
For this example, the number of latent variables to sample is equal to dya = 916. Methods akin
to | | were used to ensure correctness of the MCMC code. We computed the effective sample
size using a batch estimator, see, e.g., | ], which partitions the n samples into \/n subsets
By, By, ..., B s, each of size |By| = /n £ 1. To avoid the ESS estimator collapsing in cases where
the estimates are too off, for example when a mode is not explored properly, we first ran a longer PT
run 50 000 scans, and centre all variance computations on the estimates from that pilot run. If f(x)
is the test function of interest, and we have access to the true value or to a very accurate estimate
of the mean p = [ f(z)m(dz) and variance 02 = [(f(z) — pu)?n(dz), the centred ESS estimator is
given by n/ >, [| Bi| ™ > wen, (f(x)— @) /o]?. The only result qualitatively affected by this method

versus standard ESS computation is the performance of the single-chain MCMC, in which standard
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ESS calculations severely overestimate the quality of the samples. We ensured the ESS compu-

tation code is correct by checking we recover analytic auto-correlations values for an AR(1) process.

Results. In Figure 17, each dot summarized in the box plots represents the ESS per wall clock
time in seconds for the marginal of one of the model variables. We present two versions of the plot:
one where time is computed including adaptation time, and one where adaptation time is excluded.
The results show that adaptation is more efficient with our proposed non-reversible scheme, as
evidenced by results where the timing includes adaptation time, and also results in a more effi-
cient sampling algorithm as measured in timing measured by sampling time. The results also show
that SMC-based initialization does help PT performance, presumably by relaxing violation of the
stationarity assumption. The difference in ESS per second between single chain MCMC and the
PT methods underscore the actual difference in the quality of the sample: we show in Figure 18
the posterior distribution for the two mixture proportions (71, m2) as inferred by our non-reversible
scheme versus single chain MCMC. From symmetries induced by label switching, we know that
the two posterior distributions should be symmetric around 0.5. The plot shows that the single
chain MCMUC is qualitatively incorrect and only explored one of the two symmetric regions of the
posterior distribution whereas PT fully explores the state space. In terms of actual round trip
rates, the reversible stochastic optimization-based method achieved a rate of 7 = 0.28% whereas

our method achieved a rate of 7 = 0.72%.

8 Discussion

PT methods are generally quite powerful when they are well tuned but they are also sensitive to
design choices such as the communication scheme, the annealing schedule and the number of parallel
chains to run. In particular, if PT is used in its reversible version, it is not an embarrassingly parallel
algorithm in NV, in the sense that adding more parallel chains eventually decreases performance.

We have shown that the situation is qualitatively different in the non-reversible case, and
established for the first time that a non-reversible PT algorithm known in the physics literature
as DEO can benefit from adding an arbitrary number of chains when implemented in a massively
parallel computing setup. More precisely, we showed that with DEO communication, the round
trip rate does not deteriorate as the number of additional cores N increases, but actually increases
to an optimal round trip rate 7. This is in contrast to reversible PT where the round trip rate is
O(N~!) independent of 7, my. We also showed that for any number of chains N, non-reversible PT
dominates reversible PT. This suggests that practitioners should always use non-reversible scheme
with N as large as possible.

We identified the local communication barrier A\(3) as a key object to understanding the be-
haviour of non-reversible PT algorithms. From this rate function A we identified an asymptotic
invariant for PT called the global communication barrier A, which measures the deviance of 7= and

mg. We heuristically argued that, as the dimension of the state space d increases, we expect the
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Figure 17: Benchmarking results on a Bayesian mixture model. The y-axis shows measure of efficiency in
log-scale, and the x-axis, four different methods compared. The top plot shows the effective sample size per
second where time is computed including the adaptation iterations needed for the first four methods. The
bottom plot excludes the adaptation time from timing computation.
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Figure 18: Estimated posterior distributions for the mixture proportion parameters 7; and 7o (rows). Left
column is from a single-chain MCMC algorithm, right column, from our adaptive non-reversible PT algo-
rithm.

global barrier to grow as A = O(\/&) under regularity conditions. Moreover we established a con-
nection between the round trip rate and A, showing that 7 = (2 + 2A)~! upper bounds the round
trip rate. This means that the global communication barrier A can be interpreted as a “sufficient
statistic” for m, my from the point of view of a non-reversible PT algorithm, since for N large the
round trip rate only depends on 7, my through A.

Another consequence of our theory is that Zfi 1 r(i=19) ~ A independently of the annealing
schedule. This implies that using the rejection probabilities, we can develop an estimator of A and
7 = (24 2X\)~L. These quantities are easy to approximate, so practitioners can use them to make
informed decisions about how to allocate their computational resources. Importantly, note that
in all our experiments, the estimate of the bound 7 converges very fast, so this allows the user to
distinguish between a low round trip rate due to poor design choices versus a low rate arising from
a fundamentally hard problem having high value for the global barrier A. This is to our knowledge
the first result of this kind in the PT literature.

Using the asymptotic analysis of PT, we were able to develop a novel approach to identify the
optimal annealing schedule when IV is large but finite. In our experiments, our adaptive algorithm
converges rapidly, is easy to implement with minimal modification to existing PT implementations,
and outperforms other state-of-the-art PT adaptive schemes both in terms of round trip rate and
ESS per second (see Section 7).

Finally we study the dynamics driving the qualitative differences between reversible and non-
reversible PT through the scaling limits of the index process. We show that for reversible PT, as
N increases, the index process for reversible PT weakly converges to a reflected Brownian motion
independent of the annealing schedule, m and my. For non-reversible PT we show that the index
process scales to a PDMP which travels in straight line trajectories and reverses direction at an

inhomogeneous rate controlled by A and the annealing schedule. When we have chosen the optimal
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schedule, the rate becomes a constant equal to A. Unlike previous literature on PT, our analysis
avoids making strong structural assumptions on either 7 or the state space.

Our analysis makes use of an assumption we call ELE. Empirically we have shown in Section 7.2
that our results appear robust to violation of ELE. We conjecture that this assumption can be lifted
in the non-reversible setup. We view a detailed ELE-free theoretical analysis of the weak limit in

N of non-reversible PT as an interesting open problem.
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Appendix A Invariant distribution of KET

Since KET = KeommK Pl 5 show KL T is f-invariant, it is enough to verify that both K™P! and
K °™™ are fr-invariant. It is clear by construction that K defined by (4) is m-stationary, so
it remains to verify that this K{>™™. Clearly KSFO, KP EO are trivially #-invariant if each swap
kernel K(7) is. We verify this directly. Let X = (x,0) € XNT! x Perm([N]), then

/ 7(dx)K) (%, A x {0'})
XN+1xPerm([N])
B <N1+1>' 2 /XNH (K (%, 4 x {o}) (82)
= T fp ™09 (120 0 =
b [ @00 00 (A = ) oo (89
= (N1+1)' /X (@37 (1= 0l (0)) x(A)l[o" = o
- (le /XN+1 m(dx) Z a(i7j)(x)6x<ivj) (A)H[U/ = (i,j) o 0] (84)
= (le /XN+1 7 (dx) {(1 — a(i’j)(x)> 0x(A) + a(i’j)(x)dx(@j)(A)} (85)
= Ty TR ) (56)
— (.7V1—|—1)!7T(A) (87)
— (A x {d'}). (88)

Therefore, KE'T is #-invariant.

Appendix B Proof of Proposition 3.1

Proof of Proposition 3.1. To simplify notation for the rest of the proof, we define T} and T as the
hitting times to the posterior and prior defined by,

Ty =min{n: (I,e,) = (N,1)}, T, =min{n: (In,e,) = (0,—1)}. (89)
We will also denote

s; = 1D (90)
i = p(i=19), (91)
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(a) If we define a® = Espo(Te|Ip = i) for i =0,..., N, then we have

Espo(T) = a +a] . (92)
By the Markov property, for i = 1,..., N — 1 we have a! satisfies the recursion,
i 1 i+1 Lo i 1 i
a, = 581‘4_1(@. +1)+ §si(a, +1)+ 5(Ti+1 +7;)(ay + 1) (93)

For i = 1,..., N we substitute in b} = a’ — al ! into (93). After simplification, we get that

bl satisfies the following recursive relation,

—2 = 5,165 — s;bL. (94)
The solutions to (94) are,
s;bl = 516} — 2(i — 1), (95)
or equivalently,
sibl = syb +2(N — i) (96)

We now deal with the case of 1T and | separately.

e To determine a? we note that a if Iy = 0 then Iy = 1 with probability %51 and I; =0

otherwise. So a$ satisfies,

1 1
=gt +0+ (1-5m) @40 o
or equivalently,
Slb'lr = —2. (98)

Substituting this into (95) implies sib% = —2i. By summing b% = a% — a%_l from ¢ =
1,..., N and noting af =0 we get,

N 2
a = Z =, (99)

e Similarly to determine aiv we note that a if Iy = N then I; = N — 1 with probability
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%SN and Iy = N otherwise. So aiv satisfies,

1 1
aiv = 5sN(aiV—l +1)+ (1 — 23N> (aiv +1), (100)
or equivalently,
snb) =2 (101)

Substituting this into (96) implies sibi =2+ 2(N —1i). By summing bi = ai - ai‘l from
1=1,...,N and noting a? = 0 we get,

N :
Z 2(N —i)+2
i=1

Substituting in (99) and (102) into (92) we get,

N . N .
21 2(N —1)+2
Eseo(T) =Y 2 + 3 2N =0 (103)
i=1 "' =1 !
Y1
=2(N+1)> — (104)
i=1 "
N e
=2N(N +1) +2(N +1) 8— (105)
i=1""

(b) If we define, a’ = Epro(Te|lo =i,e9 =€) for i = 0,..., N and € = +, —, then we have,

Epeo(T) = af' ™ +a)"". (106)

Note that for i =1,..., N — 1 we have ak® satisfies the recursion relations,
ayt = s (@l + 1) + i (al +1) (107)
ab” = si(al T+ 1) +ri(al” + 1) (108)
If we substitute ¢} = ab™ +ai "7, and di = ab™ — ai " into (107) and (108) and simplify,

we get,

altht —alt =riadit -1 (109)
ay” —al b =rdl + 1 (110)
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By subtracting and adding (109) and (110) we get the joint recursion relation for ¢} and di,

At — & = diT 4 rd (111)

At —dy = ripd] 4 rady — 2 (112)
Note that (112) can be rewritten as
Si+1di+1 — Sidi = —2. (113)

. . ie )
If can solve ¢}, and d}, we can recover ay by using,

gt = Gt % (114)
2
) i d'L
ai-l— = e - (115)

We now deal with the 1 and | cases separately.

e Note that ag’_ = a$’+ + 1. We can substitute this into (109) to get sld% = —2, which
combined with (113) implies,

sidh = —2i. (116)
Since aéV’Jr = 0 we have C%V = —df, so by summing (111) we get,
2a2’7 = c% - d% (117)
N-1 ‘
= —dif =) (T =) (118)
i=1
N-1 ' '
=—dY —d} = > (ripdi™ +ridy) (119)
i=1
N .
= —SNdév — Sld% — QZTidZT. (120)
i=1

After substituting in (116) into (120) and dividing by 2 we get,

N .

_ 2ir;

0 7

T =N+1 E . 121
ay + 1+ 275 ( )

e Note that aiv’+ = af’_ + 1. We can substitute this into (110) to get sNdiV = 2, which

combined with (113) implies,

sid| =2(N —i+1). (122)
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Since a?_ = 0 we have ci = d!}, so by summing (111) we get,

N,
20" = ¢ +d (123)
N-1 ' A
=cl+d)+ ) (=) (124)
=1
N-1 4 ‘
=d| +d) + Y (ripad]" + rid)) (125)
i=1
N .
= s1d] +syd) +2)  rid]. (126)
=1

After substituting in (122) into (126) and dividing by 2 we get,

N .
Nt 2(N —i+1)ry

T=N+1 _ 127
TNy A (127)

Finally, by substituting in (121) and (127) into (106), we get

N

.

Epro(T) =2(N +1)+2(N +1) Y —.
=1

(128)

S

Appendix C Proof of Proposition 4.2

Suppose V¥ is integrable with respect to 7 and 7, we want to show here that X : [0,1] — R, given
by

1

AB) =5 [ V@) = Vlr (@)D () dady (129)

is in C*=1([0,1]). If we define L(z,y) = L(x)L(y) and mo(x,y) = mo(z)mo(y), we can rewrite (129)

as,

NB) = 55057 [, IV (@) = VL) mofe p)dady (130)
- 22((%))2 (131)
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where Z, g : [0,1] — Ry are defined by

2(9) = | L) mla)d (132)
93) = [ IV(@) = VlLe,) mo(e. p)dady, (133)

Since Z(3) > 0 on [0, 1], if we can show that Z, g € C¥~1(]0, 1]) then it implies that A € C*~1([0, 1]).

Lemma C.1. If V¥ is integrable with respect to mg and 7 for k € N. Then for all B € [0,1], j < k,
Vi is 78 integrable.

Proof. We begin by noting that for all L > 0, for 8 € [0, 1], we have L? < 1 + L. This implies,

/ V(@) [Fr® (2)dz (134)
_ 3(15 /|v JFL(2)mo () da (135)
< 2(15 /|V ko (x d:L‘+Z(16/ V(2)|*L(z)mo(z)dz (136)
_ Z(g /|v dx+§((;/ V(@) (137)
< 0. (138)

Therefore since V¥ is 7y and 7-integrable, V¥ is #(®)-integrable. Finally by Jensen’s inequality we

have for j > k,
V(2)[ 78 (z)da V(2)|Fa®) (z)da ' 0.

O
Proposition C.2. Suppose V¥ is integrable with respect to mo and 7 for some k € N then:
(a) Z € C*([0,1]) with derivatives satisfying,

i) ) :
P2 1V (@) L) Pro(w)de, (140)
g’ Jx

for j <k.
(b) g € C*1(]0,1]) with derivatives satisfying,

djg

api /)(2(—1)j|V($) V)V (2) + V(y)) Lz, y) mo(x, y)dady, (141)

forj <k.
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Proof. (a) Let h(z,8) = L(x)’my(x) = exp(—BV (x))mo(x) which satisfies,

Db ) = (VL) o) (142)

Note for all g € [0,1] and j < k,

sup
BE0,1]

;;jh(ww’ < V(@) mo(z) + |V ()l L(z)mo(z). (143)

The left hand side of (143) dominates g% uniformly in 8 and is integrable by Lemma C.1.

The result follows using the Leibniz integration rule.

Let h(z,y, 8) = |V (x) = V(y)|L(z,y) mo(z,y). By noting log L(z,y) = =V (x) = V(y), we get
b0 8) = (CIPIVE) - VOV @) + VP L) ). (040

Similar to (a), we have for all g € [0,1], j <k —1,

”ﬁuwﬁﬂsrwm—vwmwm+vwwmmw>

+ |V (2) = VIV (2) + V(y) Lz, y)mo(z, ), (145)

The left hand side of (145) dominates % uniformly in 8. It is integrable by Lemma C.1 and
using the fact that V¥ is integrable with respect to my and 7. The result follows using the
Leibniz integration rule.

O]

Appendix D Proof of Proposition 4.7

Proof of Proposition 4.7. Let Px = {fo,-..,Bn}. There exists an ig such that Pyi1 = Py U {5}
for some f;, < 8 < Biy+1. Therefore,

_ _ T(Biovﬁ) T(ﬁvﬁio+l) . T(ﬁiovﬁioJrl)
E(Pn+1) — E(Py) = SBir ) + B Bivn) 5B B (146)

— T(ﬁiovﬁ)s(ﬁvﬁio+l) + S(Bio,ﬂ)r(ﬁa ﬁioJrl) . T(/Bioa B’ioJrl)

iy B)3(B, By ) G o)

(Big: B) +7(Bs Big+1)  T(Big; Big+1)
: $(Bios B)8(Bs Big+1)  8(Bigs Big+1) (148)
(B, B) + (B, Big+1)  7(Big, Big+1) (149)

= 1—=7(Biy, B) — (B, Big+1)  5(Biy, Big+1)
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The last inequality holds since

$(Bigs B)s(B: Big+1) = (1 = 1(Big, B))(1 — (B, Big+1)) (150)
> 1 —71(Biy, B) — (B, Big+1)- (151)

By Corollary 4.3 we have

r(Bio, B) + (B, Bio+1) = 7(Bio» Bio+1) + O(|Pn ). (152)

which implies,

S(ﬁioaﬁ) (ﬁ ﬁzoJrl) (/8107B’LO+1) + O(HPNH ) (153)
and,

r(Bigs Big+1) + OIPNI?)  7(Bigs Bio+1)
$(Bio, Bio+1) + OUIPNI?)  s(Big, Bio+1)

E(Pnt1) — E(Py) < (154)

As ||Pn|| — 0, we have the right hand side is asymptotically equivalent to zero. Therefore

E(Pn+1) S E(Pw) as ||Pn|| — 0 and E(Py) is asymptotically decreasing.
To show that E(Py) asymptotically decreases to A, note that for all Py,

(=1, (155)

Mz

’I“Z 11)<EPN)

Mz

mln] S(J 1,9)

=1 =1

By Corollary 4.3 we have min; s; = 1+O(||Pn||) and Zf\;l r(=19) = A+ O(||Pn||?) which combined
with (155) implies
E(Py) = A+ O(||Pn]))- (156)

Therefore as ||Py|| — 0, E(Px) converges to A at a O(||Px]|) rate.

Appendix E Proof of Proposition 4.5

Proof of Proposition 4.5. For k = 1,2 us define V;C’B) 4 V(X,SB)) where XIE’B) ~ W((lﬁ) and V(z) =
Zf 1 V(:El) The independence structure from Equation (46) tells us that V,(f ) can be decomposed

as V ZZ 1 V ) Wwhere Vk(f ) are iid with common distribution V(B and therefore we have,

Z vo —viP), (157)
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The random variables {Vl(Z Vz(z Nd ", are independent and identically distributed with mean zero
and variance 202(3). By the central limit theorem,
Vgﬂ) _ Vgﬂ) 1 & Vl(ﬂ) _ V2(z'ﬁ)

2%2(3)d  Vd z; lTQ(B) —— Z ~N(0,1). (158)

7

Thus we have

1
Mi(B) = SE [|Vgﬁ) - Vgﬁ)@ (159)

1

B _ B
=3 202(5)dE[V1 V3

202(8)d

] . (160)

The sequence of variables indexed by d in the expectation in (160) is also uniformly integrable.
This follows by noting that the second moment of the integrand in (160) is uniformly bounded in
d:

2

v _ v
supE | [ ——2 Var v =1 161
d 202(B)d % 20 Z [ ] (161)
By d — oo and using (158) we have,
2 ~ 2
li — A =E|Z|=4/— 162
T [ =Bz = 2, (162)
which proves (47).
To show (48), we use Cauchy-Schwarz
Ma(B) _ B) _ /()
N f [yV ~ V4 \] (163)
7 var [V - v{7|] (164)
o (B)
= —. 165
3 (165)
Finally, (47), (165) along with dominated convergence theorem yield
Ag
dlggoT 0 Jm N B' (166)
O
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Appendix F Proof of scaling limit for reversible PT index process

We will prove Theorem 6.1 by using Theorem 17.25 from | ].

Theorem F.1 (Trotter, Sova, Kurtz, Mackevicius). Let X, X' X2 ... be Feller processes defined
on a state space S with generators L, L1, La, ... respectively. If D is a core for L, then the following

statements are equivalent:

1. If f € D, there exist fn € D(Ly) such that ||fn — flleo = 0 and ||LnfN — Lf|looc — 0 as
N — oo.

2. If XN(0) converges weakly to X(0) in S, then XV converges weakly to X in D(R., S).

We will be applying Theorem F.1 with £ = Ly defined as Ly f = 1 f” for f € D(Lw) where

D(Lw) = {f € C*([0,1]) : f(0) = f'(1) = 0}, (167)

and Ly = Ly~ defined in (68), which we recall here for the reader’s sake

Lo fw) =7 3 (F@F W)~ f(@)) s(u fay)s w € 0,1 (168)

ee{+1}

with ®¥ (w) defined in (62), (63) and S, = G(w). Also recall from the discussion just before (68)
that Ly~ defines a Feller semigroup.

First notice that in | ], the transition semi-group and generator of a Feller process taking
values in a metric space S are defined on Cy(S5), the space of functions vanishing at infinity.
Equivalently f € Cy(S) if and only for any 6 > 0 there exists a compact set K C S such that
for z ¢ K, |f(z)| < . In our case since S = [0, 1] is compact Cy(S) = C(5), which justifies the

definition of the generator Ly given above.

The Feller property of Lyy. Similarly Ly can be seen to define a Feller semigroup on C([0, 1])
by the Hille-Yosida theorem (see [ , Theorem 19.11]). Indeed the first condition is satisfied
since any function f € C([0,1]) can be uniformly approximated within € > 0 by a polynomial p.,
that is a smooth function, by the Stone-Weirstrass theorem. We can further uniformly approximate
pe within e by a C? function p. with vanishing derivatives at the endpoints. For example one can let,
for a 6 to be chosen later, pe(x) = pe(z) for # € (§,1-0) and for 2 < d set pe(x) = [ ps(y)pL(y)dy+c,
where p; is a smooth, increasing transition function such that ps(z) = 0 for z < 0, ps(x) = 1 for
x > & 3 ; cis chosen so that p.(x) is continuous at . A similar construction can be used for
the right-endpoint. One can then check that indeed p. € C2([0,1]), p.(0) = pL(1) = 0 and that

for ¢ small enough ||pe — pelloc < €. The second condition of | , Theorem 19.11] also holds
by [ , Corollary 5.2]. The third condition of | , Theorem 19.11] can also be easily seen to
hold.

Se.g. let ps = pl/9), pla) = g(x)/(9(x) + g(1 — 2)) and g(z) = exp(~1/a)Las0)
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Now we can apply Theorem F.1 to prove Theorem 6.1. We only need to check the first condition
of Theorem F.1. In this direction, first note that by definition ®} (w) = w=+1/N for w € [1/N,1 —
1/N]. Thus in this case using Taylor’s theorem we have for w* € [w—1/N,w] and w¥ € [w,w+1/N]
that

F@Y () — 27 (w) + F(®N () = F(w) + 1 ') + gy £ (w?)
I = S )+ g W) 2 (w) (169
= s (") + (wh)) . (170)

Since f” is uniformly continuous it follows that as N — oo,

sup [f"(wl) — f"(w)] = o(1), (171)
we(0,1]

and therefore for w € [1/N,1 — 1/N] we have

frw) (1
s @) =25+ @) - T =0 (55). (172

When w € [0,1/N) or w € (1 —1/N,1] we instead perform a Taylor expansion around 0 or
1 respectively. We only do the calculation in the first case, the other one being similar. Let
w € [0,1/N) in which case, since f/(0) =0, for w*,w*,w’ € [0,2/N]

F(@f (w)) = 2f(w) + f(@X (w)) = £(0) + 2 (w) £(0) + % [@F (w)]” f"(w?)
2

+70) + @ (w)7/(0) + 5 [#Y )] £ w)
—2£(0) — 2f"(0)w — 2f”(2w*)w2 (173)

_ ()
2

{[O¥@)]” + [@¥ (@)’ — 20} + o (N72)  (179)

where the error term is uniform in w and was obtained by combining the facts that f” is
uniformly continuous and that |®Y|, |w|/ < 2/N. Finally notice that since w € [0,1/N]

2 2
[@ (w)]? + [®N (w)]* - 20* = [w + H + H - w] —ou? = % (175)

Finally we will need the following weaker version of Theorem 4.1, whose proof we postpone

until the end of the section.
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Lemma F.2. Suppose that w(|V|), m0(|V]) < co. Then there exists a constant C' > 0 such that

sup |s(B, 8+ ) — 1| < Co. (176)
B

Using the above Lemma we can thus see that for some constant C' > 0

CllG oo

wsel[lg?l] s (@u,[ﬂpg(w)) - 1’ < C’sg}p |G(w) — G (2F (w))] < N (177)
and therefore
N2
Ly f(w) = - Z (F(@Y(w)) = f(w)) 5(Buws Ba (w)) (178)
v ee{£1}
=5 > (f(@Y(w) = f(w)) [L+o(N 1) (179)
ee{£1}
2 2 1w
= A (@ ) — 2 (w) + @Y @) [+ ov ] = LW o)), aso)

where the error term as shown above is uniform in w. Thus Ly f — Lf uniformly.

Proof of Lemma F.2. Using the bound 0 < 1 — exp(—=z) < z for > 0 we have

|s(8,8') — 1]

< [ [79a)nay [1 — exp (— max {0, (3 = )V (x) - V)]})] (181)

<15~ 8l [ [ 79(an)n®) (dy) max {0, [V(z) - Viw)]})] (182)
2)r ) ' 8lsun e (V).

<18 =81 [ [ 7O @) (Vi) + V)] <215~ Slsupr@ (v 0 (8)

Appendix G Proof of scaling limit for non-reversible PT index

process

We will prove Theorem 6.2 in a slightly round about way. We will define auxiliary processes {UY(-)},
{U()} living on the unit circle $! := {2 € C : |z| = 1} along with a mapping ¢ : $! — [0,1] x {&1}
such that ZV = ¢(UY) and Z = ¢(U). We will first show that the law of U converges weakly to
U.

Before defining the processes we point out that we will identify $' with [0,27) in the usual way

by working in mod 27 arithmetic. Notice that in this way

C(8') = {f € C([0,27]) : (0) = f(2m)}. (184)
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The reason for working with these auxiliary processes is that we can now avoid working with
PDMPs with boundaries, helping us to remove a layer of technicalities.

For any N we define ¥V : §! + $! through V() = 6 + 2r/N. Consider then a continuous-
time process UY that jumps at the arrival times of a homogeneous Poisson process with rate N

according to the kernel

QN (6,d0') = s (Bg, Bzw)) Sy () (A0) + [1 s (89, BEN(M Som_0(d6) (185)
where

Bo = (186)

Define the map
(£,41), o€fo,m),

0) =< "
) (M,—l) , 0 € [m2m). (181)

™

Essentially we think of the circle as comprising of two copies of [0, 1] glued together at the end
points. The top one is traversed in an increasing direction and the bottom one in a decreasing
direction. When glued together and viewed as a circle these dynamics translate in a counter-
clockwise rotation with occasional reflections w.r.t. the z-axis at the time of events. With this
picture in mind it should be clear that ¢(UV) = ZV.

We also define the limiting process U as follows. First let

AB) = (Ao G)(¢'(9))G"(#'(9)), (188)

ontinuous

where ¢'(6) is the first coordinate of ¢(8). Notice at this point that ¢* : $' — [0,1] is ¢
= A(6). Given

and satisfies ¢'(9) = ¢'(—6) for any 6§ € [0,27), whence we obtain that \(—6)
U(0) =6, let T} be a random variable such that

P[T} > 1] = exp {— /Ot A0+ s)ds} , (189)

and define the process as U(s) = 6 +s mod 27 for all s < T} and set U(T}) = —U(T1—) mod 2.
Iterating this procedure will define the $'-valued PDMP {U(-)}. We first need the next lemma.

Lemma G.1. Suppose V is integrable with respect to wy and w. The process U defined above is a

Feller process, its infinitesimal generator is given by

Ly f(0) = f(0) + O [f(2m — 0) — f(6)], (190)

with domain

D(Ly) = {f € CH([0,7]) : £(0) = f(2m)}, (191)

and invariant measure d0 /2.
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Proof. First, note that since $! is compact Cp($!) = C($!) and thus to study the Feller process we
consider the semi-group {P}}; defined by the process U as acting on C($'). To prove the Feller
property we can thus use [ , Theorem 27.6]. Since there is no boundary in the definition of U
the first assumption is automatically verified, Qf(0) = f(—0) € C (Sl) for any continuous f. We
also know that the rate A is bounded whereas by Proposition 4.2 and the fact that G € C 10, 1] we
know that )\ is also continuous. Therefore the third condition of [ , Theorem 27.6] holds and
thus U is Feller.

The infinitesimal generator will be defined on D(Ly) € C($'). The domain is defined as the
class of functions f € C($!) such that

o1
9(0) = lim - [Py £(0) — f(0)] € C(s'), (192)
—0h
where the limit is uniform in §. However by | , Theorem 1.33], we can also consider pointwise

limits without enlarging the domain. Using the definition of U we then have for 6 € [0, 27) that

B [(U) ~ (0)) = 7710+ ) — FOP [T >  + 7B [(f (U) ~ FO) 1{T < AY]. (199)

Since for z > 0 we have | exp(—x) —1+x| < C2? for some constant C' > 0, and using the continuity

of \ we can see that

exp {— /OhX(e + s)ds} 14 X(a)h‘ <o, (194)

and thus

110+ R) — SO [Ty 2 K] = 2 10+ 8) — FO)] L+ o(h) (195)

In addition

%Eﬁ [(f (Uy) = f(O))L{T) < h}]

h s
/O A0+ 5) exp {— /0 A0+ r)dr} as [PhQr0) - 10) (196)
6)[QF(0) - £(0)). (197)

TEE~

_>

for any f € C($') by strong continuity of {P%} (Feller property) and continuity of A
Overall we thus have that f € D(Ly) if and only if

Le (o) - 7)) = L ZTO S0y 10500) - 510 +ot1) (199)
— g(0) € C(8Y), (199)
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which is clearly equivalent to f € C*(S?).
Finally to see that df/2w is invariant, having identified the domain we can easily check that for
any f € C(S') we have

/ d9PLf(0) = / t / ALy PS £(0)d0ds. (200)
s=0
Since f € D(Ly) we have that Pf;g € D(Ly). Since for any g € D(Ly) we have
2 2m 2m
[ascoso)= [ roxos [ Serr@enas- [ o) (201)
0=0 6=0 =0
2m
= fen) =10+ [ A0)r@@)w. (202
O

Proposition G.2. Suppose UN(0) converges weakly to U(0), then UN converges weakly to U in
D(R-H [07 1])

Proof. We will once again use Theorem F.1. The generator of Uy is given by

LYFO) = N[£O0+1/N) = FO)) s (Bos Bovie) ) + N1 (=0) = fO) 7 (BosBovigy) - (208)

We will consider the two terms separately. To this end notice that by (44), the boundedness of
A and the fact that G € C1[0,1]

C

‘1 - (39,521\’(0))‘ < N’ (204)

for some C' > 0. Thus, using the mean value theorem, for each 6 € [0,27), there exists gn(0) €
[0,0 + 1/N] such that

N {70+ 1/N) = £(0)] s (Bo, Bov)) = 1 (an(8)) (1+O(/N)) = £ (6) (1 +0(1)),  (205)

where the errors are uniformly bounded and to obtain the second equality above we have used the
fact that |gn () — 0] < 1/N and that f’ is uniformly continuous, being continuous on a compact
set.

Overall we can see that as N — oo
sup [N 76 +1/N) = FO)] s (o, Bevn)) = £/(8)| = 0. (206)
Next, using (44) we have that

r (Bo, Bov(p)) = MO) 5 +o(N ), (207)



where the error is uniform in 8, whence we easily conclude that

NF-0) ~ FO)r (B0, Bie)) = MO [QFO) ~ FO)]. (208)
uniformly in 6. O

Proof of Theorem 6.2 Now we are ready to prove the main result of this section. Notice that
Z¥() = ¢ (UN() and Z(-) = 6 (U().

From Proposition G.2 we know that the finite dimensional distributions of Uy converge to those
of U. If ¢ were continuous we could conclude using the continuous mapping theorem. Since it is
not continuous at the points {0,1}, we will be using | , Theorem 2.7]. We have to check that
the law of the limiting process, that is the law of {U(-)} places zero mass on finite dimensional
distributions that hit {0,1}, that is for n € Nand 0 < ¢; < --- < t, we want

P[U(t;) € {0,1} for some i € {1,...,n}] =0, (209)

when U(0) is initialized according to df/2x. But the above follows from the fact that P[U(¢;) €
{0,1}] = 0, by stationarity when U(0) is initialised uniformly on $!.

Relative compactness of {Zn(-)}n can be easily seen to follow from the compact containment
condition | , Remark 3.7.3]. This combined with convergence of the finite dimensional distri-

butions of ZV to those of Z concludes the proof.
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